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Abstract. In this paper we consider a retained digits Cantor set T based on digit expansions
with Gaussian integer base. Let F be the set all x such that the intersection of T with its
translate by x is non-empty and let Fβ be the subset of F consisting of all x such that the
dimension of the intersection of T with its translate by x is β times the dimension of T. We
find conditions on the retained digits sets under which Fβ is dense in F for all 0 ≤ β ≤ 1.
The main novelty in this paper is that multiplication the Gaussian integer base corresponds
to an irrational (in fact transcendental) rotation in the complex plane.
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1. INTRODUCTION

Cantor sets occur in mathematical models of many naturally occurring object, play
a role in number theory, signal processing, ergodic theory, limit-theorems in probability,
and in interior design. For their role in designing relaxing floors, see [32]. We study the
“size” of the intersection of two Cantor sets. The significance of this problem was noted
by Furstenberg [9] and Palis [27]. Some papers dealing with aspects of our problem
are: [2, 3, 6, 7,17–19,21,22,25,31,33–35], and [23]. The literature in this subject and
its applications is vast. The list above is represents a small sample of the literature
closely related to our problem.

For a set T of complex number and a complex number x, the translate of T by x is
x+ T := {x+ t | t ∈ T} . Let F be the set of all x such that T ∩ (x+ T ) is non-empty.
Palis [27] conjectured that for dynamically defined Cantor sets in the real line typically
the corresponding set F either has Lebesgue measure zero or contains an interval. The
papers [5] and [24] investigate this conjecture for random retained digits sets and solve
it in the affirmative in the deterministic case.
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For 0 ≤ β ≤ 1, let Fβ be the set of x ∈ F, such that T ∩ (x+ T ) has dimension
β dim (T ) . In this paper, we consider certain Cantor subsets T of the complex plane
and present conditions under which Fβ is dense in F for all 0 ≤ β ≤ 1. For certain
Cantor subsets of the real line this was investigated in [4, 12,26], and [28].

2. PRIOR WORK ON THIS PROBLEM

2.1. PRIOR WORK IN THE REAL LINE

Most prior work closely related to our problem has been done for subsets of the real
line, we will first summarize some of what is known in that case.

Let n ≥ 2 be an integer. Any real number x ∈ [0, 1] has at least one representation
in base n

x = 0.nx1x2 . . . :=
∞∑

k=1

xk
nk

where each xk is in the digit set

D = Dn := {0, 1, . . . n− 1} .

Deleting some element from the full digit set D we get a retained set of digits
D∗ := {dk | k = 1, 2, . . . ,m} with m < n digits dk < dk+1 and a corresponding
retained digits Cantor set

T = Tn,D∗ := {0.nx1x2 . . . | xk ∈ D∗ for all k ∈ N} . (2.1)

For T to contain more than one point we need m ≥ 2. We are interested in the
dimension of the sets T ∩ (x+ T ) . Since the problem is invariant under translation
we will assume d1 = 0.

Formulas for the dimension of T ∩ (x+ T ) can be found in [3,4,16,26], and [29]
under various conditions on D∗. Examples in [28] shows there are retained digits
Cantor sets Tn,D∗ for which Fβ is not dense in F for some 0 ≤ β ≤ 1. Hence, to
show Fβ is dense in F, some conditions must be imposed on D∗. See [4, 12,26,28] for
condition under which Fβ is dense in F for all 0 ≤ β ≤ 1. It is known that T ∩ (x+ T )
only is self-similar for a small set of x, see [22] and [30].

Some of the cited papers only consider the middle thirds Cantor set, some only
consider rational t, and in some of the papers dimension means Minkowski dimension
and in some it means Hausdorff dimension.

2.2. PRIOR WORK IN THE PLANE

For subsets of the plane previous work closely related to our problem has been restricted
to Sierpinski carpets type fractals. More specifically, the dimension of T ∩ (x+ T )
is investigated in [23] for certain Sierpinski carpets T a certain class of translation
vectors x. In [2] the authors consider the intersection of a Sierpinski carpet with its



Dimension of the intersection of certain Cantor sets in the plane 229

rational translates. They use methods and obtain results similar to the ones in [26].
Both in [23] and [2] the authors study cases where the “base” is a real number and the
“digits” are vectors parallel to the coordinate axes. In particular, the scaling matrix is
a constant multiple of the identity matrix. In this paper we consider cases where the
“base” is a complex number whose phase is an irrational multiple of π and the “digits”
are real numbers.

3. PLANAR GAUSSIAN FRACTALS

As described in Section 2 numbers in the real line can be represented using an integer
base n > 1 and a digit set D = Dn = {0, 1, . . . , n− 1} . Using these representations
Cantor sets can be obtained by only using digits from some proper subset D∗ of D.
Similarly, in the complex plane will use bases b := −n + i and digit set D = Db :={

0, 1, 2, . . . , n2} , for an integer n ≥ 1. Our choice of base and digit set is motivated by
[10, Theorem 40], where it is shown that if m 6= 0 is an integer, then

{
0, 1, 2, . . . ,m2}

is a complete set of representatives for the Gaussian integers modulo a := m+ i and
by [14] where it is shown that every Gaussian integer has a unique representation of
the form

∑`
k=0 d−ka

k, d−k ∈ D =
{

0, 1, 2, . . . ,m2} if and only if m < 0.
Gaussian retained digits Cantor sets are sets

T = Tb,D∗ :=
{ ∞∑

k=1
dkb
−k | dk ∈ D∗

}
. (3.1)

obtained by only using digits from a proper subset D∗ of D = Db. For T to contain
more than one point we need D∗ to contain more than one digit. Hence we will assume
D∗ contains at least two digits, in particular n ≥ 2. Note that T =

⋃
d∈D∗ b

−1 (d+ T ) .
So T is a self-similar set. Multiplication by b−1 = |b|−1

eiθ can be thought of as
|b|−1 ×Mθ, where Mθ is a rotation matrix. Since arctan (x) is an irrational (actually
transcendental) multiple of π, when x is a rational number other than 0,±1, the angle
of rotation θ is an irrational multiple of π.

4. REPRESENTATIONS IN BASE b = −n+ i

Every complex number is within 1√
2 of some Gaussian integer Z [i]. Hence, every

complex number z is within 1√
2 of some complex number of the form

∑m
k=0 d−kb

k,

where d−k ∈ D. Now, pick a Gaussian integer
∑m
k=0 d−kb

k, d−k ∈ D within 1√
2 of bz.

Then 1
b

∑m
k=0 d−kb

k =
∑m−1
j=−1 d−j+1b

j is within 1
|b|
√

2 of z. Similarly, given any complex
number z, we can find

∑m
k=−l d−kb

k, where d−k ∈ D, within 1
|b|l
√

2 of z. It follows
that every complex number has at least one representation of the form

z =
m∑

k=−∞
d−kb

k =
m∑

k=0
d−kb

k +
∞∑

k=1
dkb
−k, dk ∈ D.
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We say that z has radix representation

z = d−m . . . d−1d0.bd1d2 . . . :=
m∑

k=−∞
d−kb

k. (4.1)

Radix representations with base b do not have all the properties of the real number
representations with base 2, 3, 4, . . . For example, it is well known that 0.10999 . . . = 1.
But, for example, if b = −2 + i with digits set D = {0, 1, 2, 3, 4}, then 0.−2+i444 . . . =
2
5 (−3 − i) and 3.−2+i0 + 142.−2+i0 = 0. Nevertheless, we find it convenient to use
radix representations with Gaussian integer base b. See [11] for an expository article on
the geometry and algebra of radix representations of complex numbers in a Gaussian
integer bases.

When studying Cantor subsets of the real line using digit representations to
some base, the basic set arising from using all the digits is the unit interval [0, 1] .
The corresponding set in our situation is the set

T0 := {0.d1d2 . . . | dk ∈ D} . (4.2)
Figure 1 of illustrates T0 when n = 2.

Fig. 1. T0, when b = −2 + i, darker grays correspond to larger d1

Sets of this type are studied extensively in the literature, among many other facts,
it is know that: (i)

⋃
x∈Z[i] (x+ T0) = C, (ii) if x 6= y in Z [i] then (x+ T0) ∩ (y + T0)

has Lebesgue measure zero, (iii) T0 is the closure of its interior, and (iv) the boundary
of T0 has Lebesgue measure zero and dimension greater than one, see for example
[1, 13,15, 20], and the references therein. The facts (i) and (ii) mean that T0 tiles the
complex plane by translation by the Gaussian integers.
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Using radix representations we can write the Gaussian retained digits Cantor set
Tb,D∗ as

T = {0.bd1d2 . . . | dk ∈ D∗} .
Write D∗ := {d1, d2, . . . , dm} where dk < dk+1. Since our problem is invariant under
translation, we will assume d1 = 0.

The Gaussian retained digits Cantor set T can be obtained from the tile T0 using
a refinement process similar to the way the usual middle thirds Cantor set C is
constructed from the closed interval C0 := [0, 1] by removing the open middle thirds
of intervals giving the sets

Ck := {0.3d1d2 . . . | dj ∈ {0, 2} , j ≤ k, dj ∈ {0, 1, 2} , j > k} .

Then Ck+1 ⊆ Ck and C =
⋂∞
k=0 Ck. Similarly, for an integer k ≥ 0, the set

Tk = {0.bd1d2 . . . | di ∈ D∗, i ≤ k, di ∈ D, i ≥ k}

is called a refinement of T0 at the kth stage.

(a) (b)

Fig. 2. Refinements of Figure 1: (a) T1, when b = −2 + i, D∗ = {0, 3} , darker grays
correspond to larger d2; (b) T2, when b = −2 + i, D∗ = {0, 3} , darker grays correspond

to larger d3

See Figure 2 for the refinements T1 and T2 when n = 2 and D∗ = {0, 3} . Clearly,
Tk+1 ⊆ Tk for all k and T =

⋂∞
k=0 Tk. Moreover,

Tk+1 =
⋃

d∈D∗
b−1 (d+ Tk) ,

where for a complex number z and a set S of complex numbers,

zS := {zs | s ∈ S} .

Similarly
Tk =

⋃

di∈D∗

(
0.bd1d2 . . . dk + b−kT0

)
.

We call sets of the form Tk + z subtiles and sets of the form 0.bd1d2 . . . dk + b−kT0,
dj ∈ D∗ subtiles of Tk.
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Clearly subtiles are similar to T0, there are |D∗|k subtiles of Tk, Tk is the union
of its subtiles, and each of these subtiles has Lebesgue measure |b|−2k =

(
n2 + 1

)−k
.

When n = 2 and D∗ = {0, 3} , Figure 4 illustrates the two subtiles of T1 and
Figure 4 the four subtiles of T2.

We say the set Tk+1 is obtained by refining the set Tk; that is, by removing from
Tk the complex numbers 0.bd1d2 . . . with digit dk+1 not in D∗.

5. DIMENSION

When we say dimension we mean box-counting dimension (also know as entropy
dimension, Kolmogorov dimension, or Minkowski dimension among other terminology).
In this paper we calculate the dimension of T ∩ (x+ T ) . In order to do so we adapt
the covering sets used in the definition of dimension to our situation.

Definition 5.1. Let E ⊂ Rn such that E is nonempty. Then the dimension of E is
defined as

dimE = lim
δ→0

log (Nδ(E))
− log (δ)

where Nδ(E) denotes the smallest number of sets each of diameter at most δ needed
to cover E. The lower box-counting dimension is obtained by using the limit inferior
in place of the limit.

Various definitions of Nδ(E) appear in the literature:

– the smallest amount of closed balls of radius δ that cover E;
– the least amount of cubes of side length δ that cover E;
– the number of δ-mesh cubes that intersect E;
– the smallest number of sets of diameter at most δ that cover E;
– the largest number of disjoint balls of radius δ with centers in E.

In [8] it is shown that all of these give equivalent definitions of dimension. We extend
the list to include the smallest number of sets of the form 0.bd1d2 . . . dk + b−kT0,
dj ∈ D, for some integer k, that cover the set E.

Lemma 5.2. Let E be a non-empty subset of T0. For a fixed integer k ≥ 1, let Nk (E)
denote the smallest number of sets of the form 0.bd1d2 . . . dk+b−kT0, dj ∈ D. Then the
dimension of E exists if and only if limk→∞

log(Nk(E))
k log(|b|) exists, and in the affirmative

case this limit is the dimension of E.

Proof. For a fixed k, let Nk (E) denote the smallest number of sets of the form
0.bd1d2 . . . dk + b−kT0, dj ∈ D, needed to cover E. Each of these sets has diameter
δk := |b|−k diam (T0) , where diam (T0) denotes the diameter of T0. Let Mδ (E) be
the number of δ-mesh squares [m1δ, (m1 + 1) δ]× [m2δ, (m2 + 1) δ] ,m1,m2 ∈ Z, that
intersect E. Since a δ-mesh square has diameter

√
2δ we have

Nk (E) ≤Mδk/
√

2 (E)
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and since any set of diameter at most δ is contained in 9 δ-mesh squares we have
1
9Mδk

(E) ≤ Nk (E) .

Hence
lim
k→∞

log (Nk (E))
− log (δk) = lim

k→∞
log (Mδk

(E))
− log (δk)

provided one of the limits exists.

6. DISJOINTNESS OF SUBTILES

In order to use Lemma 5.2 to calculate dimensions, we need to know how to find the
minimal number of subtiles needed to cover a set. Hence, in this section we show that
the subtiles of Tk are pairwise disjoint, when D∗ satisfies a separation condition. We
use this to ensure covers by subtiles contain the minimal number of subtiles. Any
condition that ensures that the subtiles are disjoint must depend on n, see Remark 6.2.
The dependence on n is due to the rotation in the scaling matrix and was therefore
not present in previous studies of the dimension of the intersection of a fractal with
its translates.

Our proof that the subtiles of Tk are pairwise disjoint is based on the following
lemma.
Lemma 6.1. Let n ≥ 2 be an integer, b = −n + i, D =

{
0, 1, . . . , n2} and

T0 = {0.d1d2 . . . | dk ∈ D} . If d, d′ ∈ C have the same imaginary part and
|d− d′| ≥ n+ 1, then (d+ T0) ∩ (d′ + T0) = ∅.
Proof. By translation it is enough to show T0 ∩ (d+ T0) = ∅ when d is a real number
and d ≥ n+1. Let z := n2

2 . Denote cs := s
b +
∑∞
k=2 zb

−k, where s ∈ D is fixed. Abusing
the radix representation notation we will write cs = 0.bszzz . . . , also when z is not an
integer. We think of cs as representing the “center” of the subtile b−1 (s+ T0) ⊆ T0.
Let

r = r (n) := n2

2
(
n2 + 1−

√
n2 + 1

) . (6.1)

Clearly, r (2) ≈ 0.72, r (n) is decreasing on the interval (0,∞) , and r (n) → 1
2 as

n→∞. Let s ∈ D. For x ∈ b−1 (s+ T0) , write x = 0.bsx2x3 . . . where xj ∈ D. Hence

|x− cs| =

∣∣∣∣∣∣

∞∑

j=2
(xj − z) b−j

∣∣∣∣∣∣
≤
∞∑

j=2
z |b|−j = n2 |b|−2

2
(

1− |b|−1
) = r,

since |b| =
√
n2 + 1. Hence, b−1 (s+ T0) is a subset of Br (cs) , where Bα (β) is the

open ball with center β ∈ C and radius α > 0. As b−1 (s+ T0) ⊆ Br (cs) , s ∈ D, we
get T0 ⊆

⋃
s∈D Br (cs) . Similarly, d+ T0 ⊆

⋃
t∈D Br (ct + d) .

Therefore, to show T0 ∩ (T0 + d) = ∅, it is sufficient to show that
⋃
s∈D Br (cs)

and
⋃
t∈D Br (ct + d) are disjoint. Hence we must show Br(cs)∩Br(d+ ct) = ∅ for all

s, t ∈ D. Figure 3 illustrates this when b = −2 + i and D∗ = {0, 3}.



234 Steen Pedersen and Vincent T. Shaw

Fig. 3. When b = −2 + i and d = 3 the “Minkowski sausages”
⋃n2

s=0 Br (cs) and⋃n2

t=0 Br (ct + d) do not intersect. The circles look like ellipses, since there are different
scales on the two axes. The dots are the centers cs and ct + d

For any s, t ∈ D,

|cs − (d+ ct)| = |0.bszzz . . .− d.btzzz . . .| = |d.b(t− s)|

is the distance between the centers of the balls Br(cs) and Br(d+ ct) and these balls
have radii r. Hence it is sufficient to show that |d.b(t− s)| > 2r, for all s, t ∈ D.
Algebraically, we get

|d.b(t− s)|2 = d2 − 2dn
n2 + 1(t− s) + 1

n2 + 1(t− s)2.

Since r determined by Eqn. (6.1) is independent of s, t ∈ D =
{

0, 1, . . . , n2} ,
we minimize

ξ (τ) := d2 − 2dn
n2 + 1τ + 1

n2 + 1τ
2

over τ ∈
[
−n2, n2] . Now

ξ′ (τ) = − 2dn
n2 + 1 + 2

n2 + 1τ.

Hence ξ′ (dn) = 0 and the minimal value of ξ (τ) over τ ∈ R is ξ (dn) = d2

n2+1 and
when n < d the minimal value of ξ (τ) over

[
−n2, n2] is ξ

(
n2) > ξ (dn) .

Hence, |d.b(t− s)| > 2r is true for all s, t ∈ D if and only if one of the following
two conditions is true:

(2r)2
< ξ (dn) = d2

n2 + 1 , (6.2)

(2r)2
< ξ

(
n2) =

d2 (n2 + 1
)

+ n4 − 2dn3

n2 + 1 and n < d. (6.3)
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Using Eqn. (6.1) we see Eqn. (6.2) is equivalent to
(

n2

n2 + 1− (n2 + 1)1/2

)2

<
d2

n2 + 1 .

Solving for d it follows (2r)2
< ξ (dn) is equivalent to

n2 (n2 + 1
)1/2

n2 + 1− (n2 + 1)1/2 < d. (6.4)

Clearly, the expression on the left hand side is close to n, when n is large. Hence,
we will look for bounds on

η (n) :=
n2 (n2 + 1

)1/2

n2 + 1− (n2 + 1)1/2 − n =
n2 (n2 + 1

)1/2 − n3 − n+ n
(
n2 + 1

)1/2

n2 + 1− (n2 + 1)1/2

for n ≥ 2. Using
(
n2 + 1

)1/2
< n+ 1 we get

η (n) < n2 (n+ 1)− n3 − n+ n (n+ 1)
n2 + n− (n+ 1) = 2n2

n2 − 1 .

Hence, η(n) < 2 and therefore Eqn. (6.4) holds for all n ≥ 2, when d ≥ n+ 2. Similarly,
using n <

(
n2 + 1

)1/2 we get

η (n) > n2 · n− n3 − n+ n · n
n2 + n− (n+ 1) = n2 − n

n2 − 1 .

Hence, 2
3 ≤ η (n) when n ≥ 2, and therefore therefore Eqn. (6.4) fails for all n ≥ 2,

when d ≤ n+ 2
3 .

Hence using Eqn. (6.2) and Eqn. (6.3) we see the only case remaining case where
|d.b(t− s)| > 2r could be true for all s, t ∈ D is when d = n+ 1 and (2r)2

< ξ
(
n2) .

When d = n+ 1,

ξ
(
n2) = 2n2 + 2n+ 1

n2 + 1 .

So using Eqn. (6.1) and d = n+ 1, the condition (2r)2
< ξ

(
n2) can be written as

(
n2

n2 + 1− (n2 + 1)1/2

)2

<
2n2 + 2n+ 1

n2 + 1 . (6.5)

Plugging in n = 2, shows this is true when n = 2. Using
(
n2 + 1

)1/2
< n+ 1 we see

Eqn. (6.5) follows from
(

n2

n2 + 1− (n+ 1)

)2

≤ 2n2 + 2n+ 1
n2 + 1 ,
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a bit of algebra simplifies this to

0 ≤ n4 − 2n3 − 2n2 + 1. (6.6)

This inequality fails when n = 2 and is true when n = 3. The derivative is 4n3−6n2−4n,
which has roots n = − 1

2 , 0, 2. Hence n4 − 2n3 − 2n2 + 1 is increasing on the interval
(2,∞) . Consequently, Eqn. (6.6) is true for all n ≥ 3. Thus Eqn. (6.5) is true for all
n ≥ 2. This completes the proof.

Remark 6.2.

(i) Consider Figure 3. The angle between the line containing the centers cs =
s
b + 0.b0zzz . . . , s ∈ D and the positive x−axis is π

2 + arctan (n) which increases
to π as n→∞.We need Br (c0) to the “left” of Br (d+ cn2) . For large n we have
1
b = −n−i

n2+1 ≈ − 1√
n2+1 . Hence cn2 ≈ − n2

√
n2+1 + 0.b0zzz . . . and c0 = 0.b0zzz . . .

Since r ? 1
2 we need we need d− n2

√
n2+1 > 1 for large n. Using n2

√
n2+1 ≈ n, we

see the bound d ≥ n+ 1 is either best possible or close to best possible.
(ii) A numerical calculation shows the condition d ≥ n + 1 is best possible for all

n ≤ 100. When d ≤ n, for some s, t, the balls Br(cs) and Br (d+ ct) will overlap.
The Python code used is in Section 8.

Now, we establish that the subtiles of Tk are disjoint provided D∗ satisfies the
separation condition.

Corollary 6.3. Let n ≥ 2 be an integer, b = −n + i, D =
{

0, 1, . . . , n2} , and
T0 = {0.bd1d2 . . . | dk ∈ D} . Suppose D∗ ⊆ D satisfies the separation condition
|d− d′| ≥ n + 1, for d 6= d′ in D∗. If dj , d′j ∈ D∗ for all j and dj 6= d′j for at
least one j, then the subtiles 0.bd1d2 . . . dk + b−kT0 and 0.bd′1d′2 . . . d′k + b−kT0 of
Tk = {0.bd1d2 . . . | dj ∈ D∗ when j ≤ k, dj ∈ D when j > k} are disjoint.

Proof. Let dj , d′j ∈ D∗ such that dj 6= d′j for at least one j. Suppose dk = d′k for all
k < i and di 6= d′i. After a translation and rescaling, if necessary, we may and will
assume i = 1. Let

ej :=
{
dj − d′j when dj > d′j ,

0 when dj ≤ d′j
and e′j :=

{
0 when dj > d′j ,

d′j − dj when dj ≤ d′j .

Then ej , e′j are in D, hence

A := 0.be2e3 . . . ek + b1−kT0 and B := 0.be′2e′2 . . . e′k + b1−kT0

are subsets of T0. Since, |e1 − e′1| = |d1 − d′1| ≥ n+ 1, it follows from Lemma 6.1 that
T0 + e1 and T0 + e′1 are disjoint. So e1 +A ⊆ e1 +T0 and e′1 +B ⊆ e′1 +T0 are disjoint.
Consequently,

0.be1e2e3 . . . ek+b−kT0 = b−1 (e1 +A) and 0.be′1e′2e′2 . . . e′k+b−kT0 = b−1 (e′1 +B)
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are disjoint. Let

fj =
{
d′j when dj > d′j ,

dj when dj ≤ d′j
and x := 0.bf1f2 . . . Then

x+ 0.be1e2e3 . . . ek + b−kT0 = 0.bd1d2 . . . dk + b−kT0,

x+ 0.be′1e′2e′2 . . . e′k + b−kT0 = 0.bd′1d′2 . . . d′k + b−kT0.

Since the left hand sides are disjoint, so are the right hand sides. This completes the
proof.

Using Lemma 5.2, we can now calculate the dimension of T using the subtiles of
Tk. This can of course also be done using self-similarity.
Corollary 6.4. Let n ≥ 2 be an integer, b = −n+ i, and D =

{
0, 1, . . . , n2}. Suppose

D∗ ⊆ D satisfies the separation condition |d− d′| ≥ n + 1, for d 6= d′ in D∗. Then
T = {0.bd1d2 . . . | dk ∈ D∗} has dimension log(|D∗|)

log(|b|) , where |D∗| denotes the cardinality
of D∗.

Proof. The number of subtiles in Tk = {z ∈ T0 | di ∈ D∗,∀i ≤ k} is |D∗|k , hence
Nk (T ) ≤ |D∗|k . Since the subtiles of Tk are disjoint by Corollary 6.3 and each subtile
contains elements of T, we have Nk (T ) ≥ |D∗|k . Hence, Nk (T ) = |D∗|k and therefore

log (Nk (T ))
k log (|b|) = log (|D∗|)

log (|b|) .

Consequently, it follows form Lemma 5.2 that the dimension of T is equal to log(|D∗|)
log(|b|) .

7. DIMENSION AND DENSITY OF Fβ IN F

We use the self-similarity construction of T to study T ∩ (x+ T ) and use these results
to find conditions under which we can prove Fβ is dense in F.

Note that T ∩ (x+ T ) 6= ∅ if and only if z = w + x for some z, w ∈ T . Therefore,
x = z−w and F = T − T := {z1 − z2 | z1, z2 ∈ T}. Because the digits of the elements
of T are restricted to D∗, we get F =

{∑∞
k=1 ekb

−k | ek ∈ ∆
}
, where ∆ := D∗ −D∗.

Since Tk+1 ⊆ Tk and T =
⋂∞
k=0 Tk we have

T ∩ (x+ T ) =
∞⋂

k=0
(Tk ∩ (x+ Tk)) .

Unfortunately, this is not what we need to be able to use Lemma 5.2. More relevant
for Lemma 5.2 would be

T ∩ (x+ T ) =
∞⋂

k=0
(Tk ∩ (bxck + Tk)) , (7.1)
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where for x = 0.bd1d2d3 . . . we let bxck denote the truncation to the first k places, i.e.,

bxck := 0.bd1d2d3 . . . dk.

Since that allow us to use Lemma 5.2. We will establish Eqn. (7.1) under some
assumptions on D∗. To do so we begin by establishing some related facts. The first of
these facts is a version of Corollary 6.3.

Lemma 7.1. Let n ≥ 2 be an integer, b = −n + i, D =
{

0, 1, . . . , n2} , and T0 =
{0.bd1d2 . . . | dk ∈ D} . Suppose D∗ ⊆ D, d ≤ n2

2 for all d ∈ D∗ and ∆ = D∗ − D∗
satisfies the separation condition |d− d′| ≥ n + 1 for all d 6= d′ in ∆. If dj , d′j ∈ ∆
for all j and dj 6= d′j for at least one j, then the subtiles 0.d1d2 . . . dk + b−kT0 and
0.bd′1d′2 . . . d′k + b−kT0 of Tk = {0.bd1d2 . . . | dj ∈ D∗ when j ≤ k, dj ∈ D when j > k}
are disjoint.

Proof. Let dj , d′j ∈ ∆ for all j and dj 6= d′j for at least one j, and let dmax be
the largest element of D∗. Let E∗ := ∆ + dmax, ej = dj + dmax, and e′j := d′j .
Then E∗, ej , e′j satisfies the assumption on D∗, dj , d′j in Corollary 6.3, hence the sets
0.be1e2 . . . ek + b−kT0 and 0.be′1e′2 . . . e′k + b−kT0 are disjoint. Translating these sets by
0.ba1a2 . . . ak, where aj := −dmax for all j, gives the desired conclusion.

The following result is a characterization of Tk ∩ (bxck + Tk) in terms of the digits
of x and D∗.

Lemma 7.2. Assume the hypotheses of Lemma 7.1. For xj ∈ ∆,

Tk ∩ (0.bx1x2 . . . xk + Tk) = {0.bu1u2 . . . uk | uj ∈ D∗ ∩ (xj +D∗)}+ b−kT0, (7.2)

where for sets A,B of complex numbers A+B := {a+ b | a ∈ A, b ∈ B} .

Proof. Let t ∈ Tk ∩ (0.bx1x2 . . . xk + Tk) . Since

t ∈ Tk = b−k
(
bk−1D∗ + . . .+ bD∗ +D∗ + T0

)
,

it follows that t = b−k
(
bk−1u1 + . . .+ buk−1 + uk + y

)
for some y ∈ T0 and uj ∈ D∗.

Using

t ∈ 0.bx1x2 . . . xk + Tk

= b−k
(
bk−1x1 + . . .+ bxk−1 + xk + bk−1D∗ + . . .+ bD∗ +D∗ + T0

)

we have t = b−k
(
bk−1x1 + . . .+ bxk−1 + xk + bk−1v1 + . . .+ bvk−1 + vk + z

)
for some

z ∈ T0 and vj ∈ D∗. Hence,

bk−1 (u1 − v1) + . . .+ b (uk−1 − vk−1) + (uk − vk) + y = bk−1x1 + . . .+ bxk−1 +xk + z.

Using uj−vj , xj ∈ ∆ when j ≤ k and Lemma 7.1 it follows that y = z and uj−vj = xj ,
when j ≤ k. Hence, uj − xj = vj ∈ D∗, when j ≤ k. This establishes ⊆ in Eqn. (7.2).
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Conversely, suppose

z ∈ {0.u1 . . . uk | uj ∈ D∗ ∩ (xj +D∗)}+ b−kT0.

Then z = 0.u1 . . . ukdk+1dk+2 . . . where uj ∈ D∗ ∩ (xj +D∗) for some 0 ≤ j ≤ k and
dk+i ∈ D for i ≥ 1. Since uj ∈ D∗, when j ≤ k, then by definition of Tk, z ∈ Tk. Since
uj ∈ D∗ + xj when j ≤ k, the first k digits of z can be expressed as uj = xj + d

′
j for

d
′
j ∈ D∗. This shows that z ∈ 0.x1 . . . xk + Tk. Therefore, z ∈ Tk ∩ (0.x1 . . . xk + Tk) .

This shows ⊇ in Eqn. (7.2).
Thus we have established equality in Eqn. (7.2).

We now establish the version of the obvious

Tk+1 ∩ (x+ Tk+1) ⊆ Tk ∩ (x+ Tk)

that is relevant for our application of Lemma 5.2.

Lemma 7.3. Assume the hypotheses of Lemma 7.1. For x ∈ F we have

Tk+1 ∩ (bxck+1 + Tk+1) ⊆ Tk ∩ (bxck + Tk) ,

for all k ≥ 0, where xj ∈ ∆.

Proof. For any k ≥ 0, and any xj ∈ ∆ we have

Tk+1 ∩ (0.bx1x2 . . . xkxk+1 + Tk+1)
= {0.bu1u2 . . . ukuk+1 | uj ∈ D∗ ∩ (xj +D∗)}+ b−k−1T0 (7.3)
⊆ {0.bu1u2 . . . ukuk+1 | uj ∈ D∗ ∩ (xj +D∗) , j ≤ k, uk+1 ∈ D}+ b−k−1T0 (7.4)
= {0.bu1u2 . . . uk | uj ∈ D∗ ∩ (xj +D∗)}+ b−kT0 (7.5)
= Tk ∩ (0.bx1x2 . . . xk + Tk) (7.6)

The first and last equalities (7.3) and (7.6) are by Lemma 7.2. The subset inclusion
(7.4) is obvious, since D∗ ⊆ D. The middle equality (7.5) follows from

T0 = b−1 (D + T0) = {0.bu | u ∈ D}+ b−1T0.

Using the lemmas we can now establish a formula for the dimension of T ∩ (x+ T ).
In this formula we use the limit inferior, since the limit need not exist.
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Theorem 7.4. Let n ≥ 2 be an integer, b = −n + i, D =
{

0, 1, . . . , n2} , and
T0 = {0.bd1d2 . . . | dk ∈ D} . Suppose D∗ ⊆ D, d ≤ n2

2 for all d ∈ D∗ and
∆ = D∗ − D∗ satisfies the separation condition |d− d′| ≥ n + 1 for all d 6= d′

in ∆. If T = {0.bd1d2 . . . | dj ∈ D∗} , then

dim (T ∩ (x+ T )) = lim inf
k→∞

log (Mk (x))
k log (|b|)

where

Mk (x) := |D∗ ∩ (x1 +D∗)| · |D∗ ∩ (x2 +D∗)| · . . . · |D∗ ∩ (xk +D∗)| ,

when x = 0.bx1x2 . . . with xj ∈ ∆.

Proof. It follows from the lemmas that T∩(x+ T ) ⊆ Tk∩(bxck + Tk) , that the subtiles
of Tk contained in T ∩ (bxck + Tk) are disjoint, that every such subtile contains points
from T ∩(x+ T ) , and the number of subtiles in Tk∩(bxck + Tk) equalsMk (x) . Hence
the claim follows from Lemma 5.2.

Our main result is a direct consequence of Theorem 7.4.

Corollary 7.5. Under the hypotheses of Theorem 7.4, Fβ is dense in F, for any
0 ≤ β ≤ 1.

Proof. Let 0 ≤ β ≤ 1 be given and let x ∈ F. Write x = 0.bx1x2 . . . with xj ∈ ∆. Fix
r > 0 and pick k, such that y = 0.bx1x2 . . . xkyk+1yk+2 . . . implies |x− y| < r for any
yj ∈ ∆.

Let hj be positive integers such that hj ≤ jβ < 1 + hj , then hj/j → β as j →∞.
Since 0 ≤ β ≤ 1 we have hj ≤ hj+1 ≤ 1 + hj . Suppose 0 < β < 1. For j > k set

yj =
{
dmax if hj = hj−1,

0 if hj = 1 + hj−1,

where dmax is the largest element of D∗. Notice D∗ ∩ (yj +D∗) = D∗ if yj = 0 and
D∗ ∩ (yj +D∗) = {dmax} if yj = dmax. Hence, if bk =

∏k
j=1 |D∗ ∩ (xj +D∗)| and

` > k, then

M` (x) = bk
∏̀

j=k+1
|D∗|hj−hj−1 = bk |D∗|h`−hk .

So

log (M` (x))
` log (|b|) = log (bk)

` log (|b|) + h` log (|D∗|)
` log (|b|) − hk log (|D∗|)

` log (|b|) .
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Thus log(M`(x))
` log(|b|) converges to

β
log (|D∗|)
log (|b|) = β dim (T )

as ` → ∞, using h`

` → β by the choice of h` and that dim (T ) = log(|D∗|)
log(|b|) by

Corollary 6.4. An application of Theorem 7.4 completes the proof. The modifications
needed to deal with the cases β = 0 and β = 1 are left for the reader.

8. PYTHON CODE FOR REMARK 6.2

import numpy as np

def r(n):
m = n ** 2
return m / (2 * (m + 1 - np.sqrt(m + 1)))

def xi(n, d, tau ):
return d ** 2 + (tau ** 2 - 2 * d * n * tau) / (n ** 2 + 1)

def min_xi (n, d):
a = 0 - n ** 2
b = xi(n, d, a)
while a <= n ** 2:

bb = xi(n, d, a)
if bb < b:

b = bb
a += 1

return b

for n in range (2, 101):
d = -1
small = -1
while small < 0:

d += 1
small = min_xi (n, d) - 4 * (r(n) ** 2)

print(n, d, small)
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