PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Narażenie na lotne DBP w atmosferze wewnętrznej obiektów basenowych

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Exposure to volatile DBPs in the indoor atmosphere of swimming pool facilities
Języki publikacji
PL
Abstrakty
PL
Pływanie jest jedną z najczęściej zalecanych form aktywności fizycznej wpływającą pozytywnie na ogólną sprawność całego organizmu. Mając w świadomości niezaprzeczalne korzyści płynące z tej formy aktywności fizycznej należy mieć na uwadze możliwe zagrożenia zdrowotne związane ze stosowanymi metodami dezynfekcji wody basenowej prowadzącymi do powstawania licznych ubocznych produktów dezynfekcji (DBP). Są one obecne głównie w wodzie, ale również, w odniesieniu do związków o dużej lotności, w powietrzu hal basenowych. Wiele z tych związków cechuje się bardzo szkodliwym oddziaływaniem na zdrowie, np. ze względu na potwierdzone lub potencjalne własności rakotwórcze, mutagenne, genotoksyczne, czy też negatywny wpływ na różne układy/narządy. W artykule zaprezentowano szeroki przegląd literaturowy na temat rodzajów występujących w atmosferze basenów lotnych DBP, zwłaszcza trihalometanów i chloramin, ich prekursorów i przyczyn powstawania. Dokonano charakterystyki tych związków oraz opisu możliwych dróg narażenia i wynikających z tego skutków zdrowotnych, ze szczególnym uwzględnieniem narażenia inhalacyjnego.
EN
Swimming is one of the most commonly recommended forms of physical activity that positively affects the overall fitness of the entire body. However, it is necessary to keep in mind the possible health risks associated with the methods used to disinfect pool water leading to the formation of numerous disinfection by-products (DBPs). They are mostly present in the water, but also, with regard to highly volatile compounds, in the air of the swimming pool halls. Many of these compounds are characterized by very harmful health effects, for example, due to confirmed or potential carcinogenic, mutagenic, genotoxic properties or negative effects on various organs. This article presents an extensive literature review on the types of volatile DBP present in the atmosphere of swimming pools, especially trihalomethanes and chloramines, their precursors and causes of formation. A characterization of these compounds and a description of possible routes of exposure and the resulting health effects, with particular emphasis on inhalation exposure, are presented in the article.
Czasopismo
Rocznik
Tom
Strony
43--54
Opis fizyczny
Bibliogr. 167 poz., rys., tab.
Twórcy
  • Katedra Ochrony Powietrza, Wydział Inżynierii Środowiska i Energetyki, Politechnika Śląska, Centrum Nowych Technologii, Gliwice
Bibliografia
  • [1] Zwiener C., Richardson S.D., DeMarini D.M., Grummt T., Glauner T., Frimmel F.H.: Drowning in disinfection byproducts? Assessing swimming pool water. Environ Sci Technol., 2007, 41(2), p. 363-372 doi: 10.1021/es062367v
  • [2] Weng S., Blatchley E.R. 3rd: Disinfection by-product dynamics in a chlorinated, indoor swimming pool under conditions of heavy use: national swimming competition. Water Res., 2011, 45(16), p. 5241-5248 https://doi.org/10.1016/j.watres.2011.07.027
  • [3] Keuten M.G., Peters M.C., Daanen H.A., de Kreuk M.K., Rietveld L.C., van Dijk J.C.: Quantification of continual anthropogenic pollutants released in swimming pools. Water Res., 2014, 53, p. 259-270 doi: 10.1016/j.watres.2014.01.027
  • [4] Lee L.T., Blatchley E.R III: Long-term monitoring of water and air quality at an indoor pool facility during modifications of water treatment. Water, 2022, 14(3), p. 335 https://doi.org/10.3390/w14030335
  • [5] Weil L., Jandik J., Eichelsdörfer D.: Organic halogenated compounds in swimming pool water. Part I. Determination of volatile halogenated hydrocarbons. Z. Wasser Abwasser Forsch, 1980, 13, p. 165-169 (in German)
  • [6] Beech J.A., Diaz R., Ordaz C., Palomeque B.: Nitrates, chlorates and trihalomethanes in swimming pool water. Am J Public Health, 1980, 70(1), p. 79-82 doi: 10.2105/ajph.70.1.79
  • [7] Richardson S.D., DeMarini D.M., Kogevinas M., Fernandez P., Marco E., Lourencetti C., Ballesté C., Heederik D., Meliefste K., McKague A.B., Marcos R., Font-Ribera L., Grimalt J.O., Villanueva C.M.: What’s in the pool? A comprehensive identification of disinfection by-products and assessment of mutagenicity of chlorinated and brominated swimming pool water. Environ Health Perspect., 2010, 118(11), p. 1523-1530 doi: 10.1289/ehp.1001965
  • [8] Xiao F., Zhang X., Zhai H., Lo I.M., Tipoe G.L., Yang M., Pan Y., Chen G.: New halogenated disinfection byproducts in swimming pool water and their permeability across skin. Environ Sci Technol., 2012, 46(13), p. 7112-7119 doi: 10.1021/es3010656
  • [9] Richardson S.D., Postigo C.: Drinking Water Disinfection By-products. In: Barceló, D. (eds) Emerging Organic Contaminants and Human Health. The Handbook of Environmental Chemistry, 2011, p. 20. Springer, Berlin https://doi.org/10.1007/698_2011_125
  • [10] Catto C., Simard S., Charest-Tardif G., Rodriguez M., Tardif R.: Occurrence and spatial and temporal variations of disinfection by-products in the water and air of two indoor swimming pools. Int J Environ Res Public Health, 2012, 9(8), p. 2562-2586 doi: 10.3390/ijerph9082562
  • [11] Chowdhury S., Alhooshani K., Karanfil T.: Disinfection byproducts in swimming pool: occurrences, implications and future needs. Water Res., 2014, 53, p. 68-109 doi: 10.1016/j.watres.2014.01.017
  • [12] Liu J., Zhang X.: Comparative toxicity of new halophenolic DBPs in chlorinated saline waste water effluents against a marine alga: halophenolic DBPs are generally more toxic than haloaliphatic ones. Water Res., 2014, 65, p. 64-72 doi: 10.1016/j.watres.2014.07.024
  • [13] Zhai H., Zhang X., Zhu X., Liu J., Ji M.: Formation of brominated disinfection by products during chloramination of drinking water: new polar species and overall kinetics. Environ Sci Technol., 2014, 48, p. 2579-2588 doi: 10.1021/es4034765
  • [14] Teo T.L.L., Coleman H.M., Khan S.J.: Chemical contaminants in swimming pools: occurrence, implications and control. Environ Int., 2015, 76, p. 16-31 https://doi.org/10.1016/j.envint.2014.11.012
  • [15] Daiber E.J., DeMarini D.M., Ravuri S.A., Liberatore H.K., Cuthbertson A.A., Thompson-Klemish A., Byer J.D., Schmid J.E., Afifi M.Z., Blatchley E.R., Richardson S.D.: Progressive increase in disinfection byproducts and mutagenicity from source to tap to swimming pool and spa water: impact of human inputs. Environ Sci Technol., 2016, 50(13), p. 6652-6662 https://doi.org/10.1021/acs.est.6b00808
  • [16] Wang W., Qian Y., Boyd J.M., Wu M., Hrudey S.E., Li X.F.: Halobenzoquinones in swimming pool waters and their formation from personal care products. Environ Sci Technol., 2013, 47(7), p. 3275-3282 doi: 10.1021/es304938x
  • [17] Manasfi T., Temime-Roussel B., Coulomb B., Vassalo L., Boudenne J-L.: Occurrence of brominated disinfection by-products in the air and water of chlorinated seawater swimming pools. Int J Hyg Environ Health, 2017, 220(3), p. 583-590 https://doi.org/10.1016/j.ijheh.2017.01.008
  • [18] Lakind J.S., Richardson S.D., Blount B.C.: The good, the bad, and the volatile: can we have both healthy pools and healthy people? Environ. Sci. Technol., 2010, 44, p. 3205-3210 http://dx.doi.org/10.1021/es903241k
  • [19] Pavon J.L.P., Martin S.H., Pinto C.G., Cordero B.M.: Determination of trihalomethanes in water samples: A review. Anal Chim Acta, 2008, 629, p. 6-23 doi: 10.1016/j.aca.2008.09.042
  • [20] Yang L., Chen X., She Q., Cao G., Liu Y., Chang V.W.-C., Tang Ch.Y.: Regulation, formation, exposure, and treatment of disinfection by-products (DBPs) in swimming pool waters: A critical review. Environ Int., 2018, 121(2), p. 1039-1057 doi: 10.1016/j.envint.2018.10.024
  • [21] Anchal P., Kumari M., Gupta S.K.: Human health risk estimation and predictive modeling of halogenated disinfection by-products (chloroform) in swimming pool waters: a case study of Dhanbad, Jharkhand, India. J Environ Health Sci Eng., 2020, 18(2), p. 1595-1605 doi: 10.1007/s40201-020-00578-6
  • [22] Blatchley E.R., Cheng M.: Reaction mechanism for chlorination of urea. Environ Sci Technol., 2010, 44(22), p. 8529-8534 doi: 10.1021/es102423u
  • [23] Lian L., E Y., Li J., Blatchley E.R. 3rd: Volatile disinfection byproducts resulting from chlorination of uric acid: implications for swimming pools. Environ Sci Technol., 2014, 48, p. 3210-3217 https://doi.org/10.1021/es405402r
  • [24] Ternes T.A., Joss A., Siegrist H.: Scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environ Sci Technol., 2004, 38, p. 392-399 doi: 10.1021/es040639t
  • [25] Keuten M.G.A., Schets F.M., Schijven J.F., Verberk J.Q.J.C., Van Dijk J.C.: Definition and quantification of initial anthropogenic pollutant release in swimming pools. Water Res., 2012, 46, p. 3682-3692 doi: 10.1016/j.watres.2012.04.012
  • [26] Bottoni P., Bonadonna L., Chirico M., Caroli S., Záray G.: Emerging issues on degradation by-products deriving from personal care products and pharmaceuticals during disinfection processes of water used in swimming pools. Microchem J., 2014, 112, p. 13-16 https://doi.org/10.1016/j.microc.2013.09.001
  • [27] Weng S., Sun P., Ben W., Huang Ch., Lee L.T., Blatchley E.R.: The presence of pharmaceuticals and personal care products in swimming pools. Environ Sci Technol Lett., 2014, 1(12), p. 495-498 https://doi.org/10.1021/ez5003133
  • [28] Sharifan H., Klein D., Morse A.N.: UV filters interaction in the chlorinated swimmingpool, a new challenge for urbanization, a need for community scale investigations. Environ Res., 2016, 148, p. 273-276 doi: 10.1016/j.envres.2016.04.002
  • [29] Kim H., Shim J., Lee S.: Formation of disinfection by-products in chlorinated swimming pool water. Chemosphere, 2002, 46(1), p.123-130 doi: 10.1016/s0045-6535(00)00581-6
  • [30] Nassan F.L., Coull B.A., Gaskins A.J., Williams M.A., Skakkebaek N.E., Ford J.B., Ye X., Calafat A.M., Braun J.M., Hauser R.: Personal care product use in men and urinary concentrations of select phthalate metabolites and parabens: Results from the Environment And Reproductive Health (EARTH) Study. Environ Health Perspect., 2017; 125(8), p. 087012 doi: 10.1289/EHP1374
  • [31] Kanan A., Selbes M., Karanfil T.: Occurrence and formation of disinfection by-products in indoor U.S. swimming pools. In: Recent Advances in Disinfection By-Products, 2015, Chapter 21, p. 405-430, ACS Symposium Series, 1190, American Chemical Society doi: 10.1021/bk-2015-1190.ch021
  • [32] Parinet J., Tabaries S., Coulomb B., Vassalo L., Boudenne J.L.: Exposure levels to brominated compounds in seawater swimming pools treated with chlorine. Water Res., 2012, 46(3), p. 828-836 https://doi.org/10.1016/j.watres.2011.11.060
  • [33] Simard S., Tardif R., Rodriguez M.J.: Variability of chlorination by-product occurrence in water of indoor and outdoor swimming pools. Water Res., 2013, 47(5), p. 1763-1772 https://doi.org/10.1016/j.watres.2012.12.024
  • [34] Ak Yang L., Schmalz C., Zhou J., Zwiener C., Chang V.W.C., Ge L., Wan M.P.: An insight of disinfection by-product (DBP) formation by alternative disinfectants for swimming pool disinfection under tropical condition. Water Res., 2016, 101, p. 535-546 doi: 10.1016/j.watres.2016.05.088
  • [35] Richardson S.D: Disinfection by-products and other emerging contaminants in drinking water. Trends Anal Chem., 2003, 22(10), p. 666-684 doi: 10.1016/S0165-9936(03)01003-3
  • [36] Glauner T., Waldmann P., Frimmel F.H., Zwiener C.: Swimming pool water-fractionation and genotoxicological characterization of organic constituents. Water Res., 2005, 39(18), p. 4494-4502 doi: 10.1016/j.watres.2005.09.005
  • [37] Tardif R., Catto C., Haddad S., Simard S., Rodriguez M.: Assessment of air and water contamination by disinfection by-products at 41 indoor swimming pools. Environ Res J., 2016, 148, p. 411-420 doi: 10.1016/j.envres.2016.04.011
  • [38] Sdougkou A., Kapsalaki K., Kozari A., Pantelaki I., Voutsa D.: Occurrence of disinfection by-products in swimming pools in the Area of Thessaloniki, Northern Greece. Assessment of multi-pathway exposure and risk. Molecules, 2021, 26(24), p. 7639 doi: 10.3390/molecules26247639
  • [39] Weaver W.A., Li J., Wen Y., Johnston J., Blatchley M.R., Blatchley E.R. 3rd: Volatile disinfection by-product analysis from chlorinated indoor swimming pools. Water Res., 2009, 43(13), p. 3308-3318 doi: 10.1016/j.watres.2009.04.035
  • [40] Li J., Blatchley E.R. 3rd.: Volatile disinfection byproduct formation resulting from chlorination of organic-nitrogen precursors in swimming pools. Environ Sci Technol., 2007, 41(19), p. 6732-6739 doi: 10.1021/es070871
  • [41] E Y., Bai H., Lian L., Li J., Blatchley E.R. 3rd.: Effect of chloride on the formation of volatile disinfection byproducts in chlorinated swimming pools. Water Res., 2016, 105, p. 413-420 doi: 10.1016/j.watres.2016.09.018
  • [42] Bernard A., Carbonnelle S., Dumont X., Nickmilder M.: Infant swimming practice, pulmonary epithelium integrity, and the risk of allergic and respiratory diseases later in childhood. Pediatrics, 2007, 119(6), p. 1095-1103 doi: 10.1542/peds.2006-3333
  • [43] Bernard A., Carbonnelle S., Michel O., Higuet S., De Burbure C., Buchet J.P., Hermans C., Dumont X., Doyle I.: Lung hyperpermeability and asthma prevalence in schoolchildren: unexpected associations with the attendance at indoor chlorinated swimming pools. Occup Environ Med., 2003, 60(6), p. 385-94 doi: 10.1136/oem.60.6.385
  • [44] Hansen K.M.S., Spiliotopoulou A., Cheema W.A., Andersen H.R.: Effect of ozonation of swimming pool water on formation of volatile disinfection by-products - A laboratory study. Chemical Engineering Journal, 2016, 289, p. 277-285 https://doi.org/10.1016/j.cej.2015.12.052
  • [45] Sa C., Boaventura R., Pereira I.: Analysis of haloacetic acids in water and air (aerosols) from indoor swimming pools using HSSPME/GC/ECD. J Environ Sci Health, A, Tox Hazard Subst Environ Eng., 2012, 47(2), p. 176-183 doi: 10.1080/10934529.2012.640246
  • [46] Cardador M. J., Gallego M.: Haloacetic acids in swimming pools: swimmer and worker exposure. Environ Sci Technol., 2011, 45(13), p. 5783-5790 doi: 10.1021/es103959d
  • [47] WHO: Water, Sanitation and Health Team. Guidelines for safe recreational water environments. Volume 2, Swimming pools and similar environments. World Health Organization, 2006 https://apps.who.int/iris/handle/10665/43336
  • [48] Zhang Yj., Zhou Ll., Zeng G., Song Zg., Li Gb.: Factors affecting the formation of trihalomethanes in the presence of bromide during chloramination. J. Zhejiang Univ. Sci., 2010, 11, p. 606-612 https://doi.org/10.1631/jzus.A1000100
  • [49] US EPA. 2003a. User’s manual swimmer exposure assessment model (SWIMODEL) Version 3.0. U.S. Environmental Protection Agency Office of Pesticide Programs Antimicrobials Division https://www.epa.gov/sites/default/files/2015-09/documents/swimodel-users-guide.pdf
  • [50] WHO: Disinfectants and Disinfectant By-Products - Environmental Health Criteria 216, 2000, https://apps.who.int/iris/handle/10665/42274
  • [51] Chowdhury S.: Predicting human exposure and risk from chlorinated indoor swimming pool: a case study. Environmental Monitoring and Assessment, 2015, 187(8), p. 502 doi: 10.1007/s10661-015-4719-8
  • [52] Manasfi T., De Méo M., Coulomb B., Di Giorgio C., Boudenne J.-L.: Identification of disinfection by-products in freshwater and seawater swimming pools and evaluation of genotoxicity. Environment International, 2016, 88, p. 94-102 doi: http://dx.doi.org/10.1016/j.envint.2015.12.028
  • [53] Weisel C.P., Richardson S.D., Nemery B., Aggazzotti G., Baraldi E., Blatchley E.R. 3rd, Blount B.C., Carlsen K.H., Eggleston P.A., Frimmel F.H., Goodman M., Gordon G., Grinshpun S.A., Heederik D., Kogevinas M., LaKind J.S., Nieuwenhuijsen M.J., Piper F.C., Sattar S.A.: Childhood asthma and environmental exposures at swimming pools: state of the science and research recommendations. Environ Health Perspect., 2009, 117(4), p. 500-507 doi: 10.1289/ehp.11513.
  • [54] Kanan A., Karanfil T.: Formation of disinfection by-products in indoor swimming pool water: The contribution from filling water natural organic matter and swimmer body fluids. Water Res., 2011, 45(2), p. 926-932 https://doi.org/10.1016/j.watres.2010.09.031.
  • [55] Bradford W.L.: What bathers put into a pool: a critical review of body fluids and a body fluid analog. International Journal of Aquatic Research and Education, 2014, 8, p. 168-181 doi: 10.1123/ijare.2013-0028
  • [56] Carter R.A.A., Joll C.A.: Occurrence and formation of disinfection by-products in the swimming pool environment: A critical review. J Environ Sci., 2017, 58, p. 19-50 https://doi.org/10.1016/j.jes.2017.06.013
  • [57] Hirokawa T., Okamoto H., Gosyo Y., Tsuda T., Timerbaev A.R.: Simultaneous monitoring of inorganic cations, amines and amino acids in human sweat by capillary electrophoresis. Anal Chim Acta, 2007, 581(1), p. 83-8 doi: 10.1016/j.aca.2006.07.077
  • [58] Montain S.J., Cheuvront S.N., Lukaski H.C.: Sweat mineral-element responses during 7 h of exercise-heat stress. Int. J. Sport Nutr. Exerc. Metab., 2007, 17(6), p. 74-582 doi: 10.1123/ijsnem.17.6.574
  • [59] Schmalz C., Frimmel F.H., Zwiener C.: Trichloramine in swimming pools - Formation and mass transfer, Water Research, 2011, 45(8), p. 2681-2690, https://doi.org/10.1016/j.watres.2011.02.024
  • [60] De Laat J., Feng W., Freyfer D.A., Dossier-Berne F.: Concentration levels of urea in swimming pool water and reactivity of chlorine with urea. Water Res., 2011, 45(3), p. 1139-1146 doi: 10.1016/j.watres.2010.11.005
  • [61] Weng S., Li J., Blatchley E.R. 3rd.: Effects of UV 254 irradiation on residual chlorine and DBPs in chlorination of model organic-N precursors in swimming pools. Water Res., 2012, 46(8), p. 2674-82 doi: 10.1016/j.watres.2012.02.017
  • [62] Wyczarska-Kokot J.: Porównanie stężeń chloramin w wodzie basenowej w zależności od funkcji basenu. Proceedings of ECOpole, 2015, 9(1), p. 357-363 doi: 10.2429/proc.2015.9(1)045
  • [63] Afifi M.Z., Blatchley E.R.: Seasonal dynamics of water and air chemistry in an indoor chlorinated swimming pool. Water Res, 2015, 68, p. 771-783 doi: 10.1016/j.watres.2014.10.037
  • [64] Wolfe R.L., Ward N.R., Olson B.H.: Inorganic chloramines as drinking water disinfectants: a review. J. Am. Water Works Assoc., 1984, 76(5), p. 74-88 doi: 10.1002/J.15518833.1984.TB05337.X
  • [65] Florentin A., Hautemanière A., Hartemann P.: Health effects of disinfection by-products in chlorinated swimming pools, International Journal of Hygiene and Environmental Health, 2011, 214(6), p. 461-469 doi: 10.1016/j.ijheh.2011.07.012
  • [66] Wastensson G., Eriksson K.: Inorganic chloramines: a critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. Crit Rev Toxicol., 2020, 50(3), p. 219-271 doi: 10.1080/10408444.2020.1744514
  • [67] Couto M., Bernard A., Delgado L., Drobnic F., Kurowski M., Moreira A., Rodrigues-Alves R., Rukhadze M., Seys S., Wiszniewska M., Quirce S.: Health effects of exposure to chlorination by-products in swimming pools. Allergy, 2021, 76(11), p. 3257-3275 doi: 10.1111/all.15014
  • [68] Holzwarth G., Balmer R.G., Soni L.: The fate of chlorine and chloramines in cooling towers Henry’s law constants for flashoff. Water Res., 1984, 18(11), p. 1421-1427 https://doi.org/10.1016/0043-1354(84)90012-5
  • [69] Baxter R.C.: Designing for IAQ in natatoriums. ASHRAE Journal, 2012, 54, p. 24-32
  • [70] Fantuzzi G., Righi E., Predieri G., Giacobazzi P., Petra B., Aggazzotti G.: Airborne trichloramine (NCl(3)) levels and self-reported health symptoms in indoor swimming pool workers: dose-response relationships. J Expo Sci Environ Epidemiol, 2013, 23(1), p. 88-93 http://dx.doi.org/10.1038/jes.2012.56
  • [71] Lindstrom A., Pleil J., Berkoff D.: Alveolar breath sampling and analysis to assess trihalomethane exposures during competitive swimming training. Environ Health Perspect., 1997, 105(6), p. 636-642 doi: 10.1289/ehp.97105636
  • [72] Panyakapo M., Soontornchai S., Paopuree P.: Cancer risk assessment from exposure to trihalomethanes in tap water and swimming pool water. J Environ Sci., 2008, 20(3), p. 372-378 doi: 10.1016/s1001-0742(08)60058-3.
  • [73] Avsar E., Avsar D.D., Hayta S.: Evaluation of disinfection by-product (DBP) formation and fingerprint in a swimming pool in Bitlis/Turkey: a case study. Environmental forensics, 2020, 21(3-4), p. 375-385 doi: 10.1080/15275922.2020.1772413
  • [74] Villanueva C.M., Cantor K.P., Grimalt J.O., Malats N., Silverman D., Tardon A., Garcia C.R., Serra C., Carrato A,. Castano-Vinyals G., Marcos R., Rothman N., Real F.X., Dosemeci M., Kogevinas M.: Bladder cancer and exposure to water disinfection by products through ingestion, bathing, showering and swimming in pools. Am J Epidemiol., 2007, 165, p. 148-156 doi: 10.1093/aje/kwj364
  • [75] Villanueva C.M., Gagniere B., Monfort C., Nieuwenhuijsen M.J., Cordier S.: Sources of variability in levels and exposure to trihalomethanes. Environ Res., 2007, 103, p. 211-220 doi: 10.1016/j.envres.2006.11.001.
  • [76] Chen M.J., Lin C.H., Duh J.M., Chou W.S., Hsu H.T.: Development of a multipathway probabilistic health risk assessment model for swimmers exposed to chloroform in indoor swimming pools. J Hazard Mater, 2011, 185(2-3), p. 1037-1044 doi: 10.1016/j.jhazmat.2010.10.011.
  • [77] Lee J., Ha K.T., Zoh K.D.: Characteristics of trihalomethane (THM) production and associated health risk assessment in swimming pool waters treated with different disinfection methods. Sci Total Environ., 2009, 407, p. 1990-1997 doi: 10.1016/j.scito-tenv.2008.11.021.
  • [78] Villanueva C.M., Font-Ribera L.: Health impact of disinfection byproducts in swimming pools. Ann Ist Super Sanita, 2012; 48(4), p. 387-396 doi: 10.4415/ANN_12_04_06
  • [79] Marco E., Lourencetti C., Grimalt J.O., Gari M., Fernández P., Font-Ribera L., Villanueva C.M., Kogevinas M.: Influence of physical activity in the intake of trihalomethanes in indoor swimming pools. Environ Res., 2015, 140, p. 292-299 doi: 10.1016/j.envres.2015.04.005
  • [80] Erdinger L., Kühn K.P., Kirsch F., Feldhues R., Fröbel T., Nohynek B., Gabrio T.: Pathways of trihalomethane uptake in swimming pools. Int J Hyg Environ Health., 2004, 207(6), p. 571-575 doi: 10.1078/1438-4639-00329
  • [81] Lourencetti C., Grimalt J.O., Marco E., Fernandez P., Font-Ribera L., Villanueva C.M., Kogevinas M.: Trihalomethanes in chlorine and bromine disinfected swimming pools: air-water distributions and human exposure. Environ Int., 2012, 15, 45, p. 59-67 doi: 10.1016/j.envint.2012.03.009
  • [82] Levesque B., Ayotte P., Tardif R. Charest-Tardif G., Dewailly E., Prud’Homme D., Gingras G., Allaire S.: Evaluation of the health risk associated with exposure to chloroform in indoor swimming pools. J Toxicol Environ Health A, 2000, 61, p. 225-243 doi: 10.1080/00984100050136553
  • [83] Dyck R., Sadiq R., Rodriguez M.J., Simard S., Tardif R.: Trihalomethane exposures in indoor swimming pools: a level III fugacity model. Water Res., 2011, 45(16), p. 5084-5098 doi: 10.1016/j.watres.2011.07.005
  • [84] Thompson K.M.: Changes in children’s exposure as a function of age and the relevance of age definitions for exposure and health risk assessment. MedGenMed., 2004, 6(3), p. 2 PMID: 15520624
  • [85] WHO: Children are not little adults. Children’s Health and the Environment WHO Training Package for the Health Sector 2008. WHO/CED/PHE/EPE/19.12.07 https://www.who.int/publications/i/item/WHO-CED-PHE-EPE-19.12.07
  • [86] Couto M., Bernard A., Delgado L., Drobnic F., Kurowski M., Moreira A., Rodrigues Alves R., Rukhadze M., Seys S., Wiszniewska M., Quirce S.: Health effects of exposure to chlorination by-products in swimming pools. Allergy, 2021, 76(11), p. 3257-3275 doi: 10.1111/all.15014
  • [87] Erdinger K., Kühn L., Gabrio T.: Formation of trihalomethanes in swimming pool water - identification of precursors and kinetics of formation. Proceedings of the 1st International Conference of Health and Water Quality Aspects of the Man Made Recreational Water Environment; 10-11 March, 2005; Budapest
  • [88] Bożym M., Wzorek M., Kłosok-Bazan I.: Health risk as a consequence of exposure to trihalomethanes in swimming pool water. Rocz Panstw Zakl Hig., 2017, 68(4), p. 331-337 PMID: 29264908
  • [89] van Veldhoven K., Keski-Rahkonen P., Barupal D.K., Villanueva C.M., Font-Ribera L., Scalbert A., Bodinier B., Grimalt J.O., Zwiener C., Vlaanderen J., Portengen L., Vermeulen R., Vineis P., Chadeau-Hyam M., Kogevinas M.: Effects of exposure to water disinfection by-products in a swimming pool: A metabolome-wide association study. Environ Int., 2018, 111, p. 60-70 doi: 10.1016/j.envint.2017.11.017
  • [90] Xu X., Weisel C.P.: Inhalation Exposure to Haloacetic Acids and Haloketones during Showering. Environ. Sci. Technol. 2003, 37(3), p. 569-576 https://doi.org/10.1021/es025747z
  • [91] Aggazzotti G., Fantuzzi G., Righi E., Predieri G.: Blood and breath analyses as biological indicators of exposure to trihalomethanes in indoor swimming pools. Sci Total Environ., 1998, 217(1-2), p. 155-163 doi: 10.1016/s0048-9697(98)00174-0
  • [92] Cammann K., Hubner K.: Trihalomethane concentrations in swimmers’ and bath attendants’ blood and urine after swimming or working in indoor swimming pools. Arch Environ Health, 1995, 50(1), p. 61-65 doi: 10.1080/00039896.1995.9955013
  • [93] Caro J., Gallego M.: Assessment of exposure of workers and swimmers to trihalomethanes in an indoor swimming pool. Environ Sci Technol., 2007, 41(13), p. 4793-4798 doi: 10.1021/es070084c
  • [94] Caro J, Gallego M.: Alveolar air and urine analyses as biomarkers of exposure to trihalomethanes in an indoor swimming pool. Environ Sci Technol., 2008, 42(13), p. 5002-5007 doi: 10.1021/es800415p
  • [95] Fantuzzi G., Righi E., Predieri G., Ceppelli G., Gobba F., Aggazzotti G.: Occupational exposure to trihalomethanes in indoor swimming pools. Sci Total Environ., 2001, 264(3), p. 257-265 doi: 10.1016/s0048-9697(00)00722-1
  • [96] Aggazzotti G., Fantuzzi G., Righi E., Tartoni P., Cassinadri T., Predieri G.: Chloroform in alveolar air of individuals attending indoor swimming pools. Arch Environ Health, 1993, 48(4), p. 250-254 doi: 10.1080/00039896.1993.9940368
  • [97] Font-Ribera L., Kogevinas M., Zock J.P., Gómez F.P., Barreiro E., Nieuwenhuijsen M.J., Fernandez P., Lourencetti C., Pérez Olabarría M., Bustamante M., Marcos R., Grimalt J.O., Villanueva C.M.: Short-term changes in respiratory biomarkers after swimming in a chlorinated pool. Environ Health Perspect., 2010, 118(11), p. 1538-1544 doi: 10.1289/ehp.1001961
  • [98] WHO: Guidelines for Drinking-water Quality. 2017 https://www.who.int/publications/i/item/9789241549950
  • [99] EPA (IRIS): Chloroform; CASRN 67-66-3. Washington, D.C.,1987 https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0025_summary.pdf
  • [100] EPA (IRIS): Bromodichloromethane; CASRN 75-27-4. Washington, D.C.,1987 https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0213_summary.pdf
  • [101] EPA (IRIS): Bromoform; CASRN 75-25-2. Washington, D.C.,1987 https://iris.epa.gov/static/pdfs/0214_summary.pdf
  • [102] EPA (IRIS): Dibromochloromethane; CASRN 124-48-1. Washington, D.C.,1987 https://iris.epa.gov/static/pdfs/0222_summary.pdf
  • [103] US EPA: Human Health Benchmarks in Multimedia, Multipathway, and Multireceptor Risk Assessment (3MRA) Modeling System - Volume II: Site-based, Regional, and National Data. US EPA archive document - 2-chap15. pdf https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwitiIDxpN_kAhVPKlAKHY0TA1IQFjAAegQIAhAC&url=https%3A%2F%2Farchive.epa.gov%2Fepawaste%2Fhazard%2Fweb%2Fpdf%2F2-chap15.pdf&usg=AOvVaw33MHsyvHLOf-5k1obJJN-yZ
  • [104] Risk Assessment Information System (RAIS) (2010). http://rais.ornal.gov. Accessed 15 June 2022
  • [105] Cal/EPA California Environmental Protection Agency (Cal/EPA) (2010) http://www.calepa.ca.gov.
  • [106] EPA Guidelines for Carcinogen Risk Assessment, https://www.epa.gov/risk/guidelines-carcinogen-risk-assessment
  • [107] US EPA: Integrated Risk Information System (electronic data base). U.S. Environmental Protection Agency, Washington DC. https://www.epa.gov/iris/basic-information-about-integrated-risk-information-system
  • [108] Hang C., Zhang B., Gong T., Xian Q.: Occurrence and health risk assessment of halogenated disinfection byproducts in indoor swimming pool water. Sci Total Environ., 2016, 543(A), p. 425-431 doi: 10.1016/j.scitotenv.2015.11.055
  • [109] Kanan A.: Occurrence and formation of disinfection by-products in indor swimming pools water. Clemson University, 2010 https://tigerprints.clemson.edu/cgi/view-content.cgi?article=1532&context=all_dissertations
  • [110] Anchal P., Kumari M., Gupta S.K.: Human health risk estimation and predictive modeling of halogenated disinfection by-products (chloroform) in swimming pool waters: a case study of Dhanbad, Jharkhand, India. J Environ Health Sci Eng., 2020, 18(2), p. 1595-1605 doi: 10.1007/s40201-020-00578-6
  • [111] Dehghani M, Shahsavani S, Mohammadpour A, Jafarian A, Arjmand S, Rasekhi MA, Dehghani S, Zaravar F, Derakhshan Z, Ferrante M, Oliveri Conti G.: Determination of chloroform concentration and human exposure assessment in the swimming pool. Environ Res., 2022, 203, p. 111883 doi: 10.1016/j.envres.2021.111883
  • [112] Hamidin N., Yu Q.J., Connell D.W.: Human health risk assessment of chlorinated disinfection by-products in drinking water using a probabilistic approach. Water Res., 2008, 42, p. 3263-3274 doi: 10.1016/j.watres.2008.02.029
  • [113] Villanueva C.M., Cordier S., Font-Ribera L., Salas L.A., Levallois P.: Overview of disinfection by-products and associated health effects. Curr Environ Health Rep., 2015, 2(1), p. 107-115 doi: 10.1007/s40572-014-0032-x
  • [114] Espín-Pérez A., Font-Ribera L., van Veldhoven K., Krauskopf J., Portengen L., Chadeau-Hyam M., Vermeulen R., Grimalt J.O., Villanueva C.M., Vineis P., Kogevinas M., Kleinjans J.C., de Kok T.M.: Blood transcriptional and microRNA responses to short-term exposure to disinfection by-products in a swimming pool. Environ Int., 2018, 110, p. 42-50 doi:10.1016/j.envint.2017.10.003
  • [115] Evlampidou I., Font-Ribera L., Rojas-Rueda D., Gracia-Lavedan E., Costet N., Pearce N., Vineis P., Jaakkola J.J.K., Delloye F., Makris K.C., Stephanou E.G., Kargaki S., Kozisek F., Sigsgaard T., Hansen B., Schullehner J.: Trihalomethanes in drinking water and bladder cancer burden in the European Union. Environ Health Perspect., 2020, 128(1), p. 1700 doi: 10.1289/EHP4495
  • [116] King W.D., Marrett L.D., Woolcott C.G.: Case-control study of colon and rectal cancers and chlorination byproducts in treated water, Cancer Epidemiol. Biomarkers Prev., 20009, p. 813-818 PMID: 10952098
  • [117] Bove G.E. Jr, Rogerson P.A., Vena J.E.: Case control study of the geographic variability of exposure to disinfectant byproducts and risk for rectal cancer. Int J Health Geogr., 2007, 6, p. 18 doi: 10.1186/1476-072X-6-18
  • [118] Villanueva C.M., Cantor K.P., Grimalt J.O., Malats N., Silverman D., Tardon A., Garcia-Closas R., Serra C., Carrato A., Castaño-Vinyals G., Marcos R., Rothman N., Real F.X., Dosemeci M., Kogevinas M.: Bladder cancer and exposure to water disinfection by-products through ingestion, bathing, showering, and swimming in pools. Am J Epidemiol., 2007, 165(2), p. 148-156 doi: 10.1093/aje/kwj364
  • [119] Jeong C.H., Postigo C., Richardson S.D., Simmons J.E., Kimura S.Y., Marinas B.J., Barcelo D., Liang P., Wagner E.D., Plewa M.J.: Occurrence and comparative toxicity of haloacetaldehyde disinfection byproducts in drinking water. Environ. Sci. Technol., 2015, 49, p. 13749-13759 doi: 10.1021/es506358x
  • [120] Kogevinas M., Villanueva C.M., Font-Ribera L., Liviac D., Bustamante M., Espinoza F., Nieuwenhuijsen M.J., Espinosa A., Fernandez P., DeMarini D.M., Grimalt J.O., Grummt T., Marcos R.: Genotoxic effects in swimmers exposed to disinfection by-products in indoor swimming pools. Environ Health Perspect., 2010, 118(11), p. 1531-1537 doi: 10.1289/ehp.1001959
  • [121] Richardson S.D., Plewa M.J., Wagner E.D., Schoeny R., Demarini D.M.: Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat Res., 2007, 636(1-3), p. 178-242 doi: 10.1016/j.mrrev.2007.09.001
  • [122] ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Evaluation des risques sanitaires liés aux piscines. Partie I: piscines réglementées. ANSES, 2011, p. 244 (report in French available at: https:// www.anses.fr/fr/system/files/EAUX2007sa0409Ra.pdf
  • [123] Bove F., Shim Y., Zeitz P.: Drinking water contaminants and adverse pregnancy outcomes: a review. Environ Health Perspect., 2002, 110 (Suppl 1), p. 61-74 doi: 10.1289/ehp.02110s161
  • [124] Graves C.G., Matanoski G.M., Tardiff R.G.: Weight of evidence for an association between adverse reproductive and developmental effects and exposure to disinfection by-products: a critical review. Regul Toxicol Pharmacol., 2001, 34(2), p. 103-124 doi: 10.1006/rtph.2001.1494
  • [125] Hwang B.F., Jaakkola J.J.: Risk of stillbirth in the relation to water disinfection by-products: a population-based case-control study in Taiwan. PLoS One., 2012, 7(3), p. 33949 doi: 10.1371/journal.pone.0033949
  • [126] Levallois P., Gingras S., Marcoux S., Legay C., Catto C., Rodriguez M., Tardif R.: Maternal exposure to drinking-water chlorination by-products and small-for-gestational-age neonates. Epidemiology, 2012, 23(2), p. 267-276 doi: 10.1097/EDE.0b013e3182468569. Erratum in: Epidemiology, 2013, 24(2), p. 339
  • [127] Aggazzotti G., Righi E., Fantuzzi G., Biasotti B., Ravera G., Kanitz S., Barbone F., Sansebastiano G., Battaglia M.A., Leoni V., Fabiani L., Triassi M., Sciacca S., Collaborative Group for the Study of Chlorinated Drinking Waters and Pregnancy: Chlorination by-products (CBPs) in drinking water and adverse pregnancy outcomes in Italy. J Water Health., 2004, 2(4), p. 233-247 PMID: 15666965
  • [128] Nieuwenhuijsen M.J., Martinez D., Grellier J., Bennett J., Best N., Iszatt N., Vrijheid M., Toledano M.B.: Chlorination disinfection by-products in drinking water and congenital anomalies: review and meta-analyses. Environ Health Perspect., 2009, 117(10), p. 1486-1493 doi: 10.1289/ehp.0900677
  • [129] Nieuwenhuijsen M.J., Northstone K., Golding J. ALSPAC Study Team. Swimming and birth weight. Epidemiology, 2002, 13(6), p. 725-8 doi: 10.1097/00001648-200211000-00020
  • [130] Patelarou E., Kargaki S, Stephanou EG, Nieuwenhuijsen M, Sourtzi P, Gracia E, Chatzi L, Koutis A, Kogevinas M.: Exposure to brominated trihalomethanes in drinking water and reproductive outcomes. Occup Environ Med., 2011, 68(6), p. 438-445 doi: 10.1136/oem.2010.056150
  • [131] Grellier J., Bennett J., Patelarou E., Smith R.B., Toledano M.B., Rushton L., Briggs D.J., Nieuwenhuijsen M.J.: Exposure to disinfection by-products, fetal growth, and prematurity: a systematic review and meta-analysis. Epidemiology, 2010, 21(3), p. 300-313 doi: 10.1097/EDE.0b013e3181d61ffd
  • [132] Juhl M., Kogevinas M., Andersen P.K., Andersen A.M., Olsen J.: Is swimming during pregnancy a safe exercise? Epidemiology, 2010, 21(2), p. 253-258 doi: 10.1097/EDE.0b013e3181cb6267
  • [133] Villanueva C.M., Gracia-Lavedán E., Ibarluzea J., Santa Marina L., Ballester F., Llop S., Tardón A., Fernández M.F., Freire C., Goñi F., Basagaña X., Kogevinas M., Grimalt J.O., Sunyer J.: INMA (Infancia y Medio Ambiente) Project. Exposure to trihalomethanes through different water uses and birth weight, small for gestational age, and preterm delivery in Spain. Environ Health Perspect., 2011, 119(12), p. 1824-1830 doi: 10.1289/ehp.1002425
  • [134] Dowty B.J., Laseter J.L., Storer J.: The transplacental migration and accumulation in blood of volatile organic constituents. Pediatr Res., 1976, 10(7), p. 696-701 doi: 10.1203/00006450-197607000-00013
  • [135] Tardiff R.G., Carson M.L., Ginevan M.E.: Updated weight of evidence for an association between adverse reproductive and developmental effects and exposure to disinfection by-products. Regul Toxicol Pharmacol., 2006, 45(2), p. 185-205 doi: 10.1016/j.yrtph.2006.03.001
  • [136] Nickmilder M., Bernard A.: Associations between testicular hormones at adolescence and attendance at chlorinated swimming pools during childhood. Int J Androl., 2011, 34(5), p. 446-458 doi: 10.1111/j.1365-2605.2011.01174.x
  • [137] Guariglia S.R., Jenkins E.C., Chadman K.K., Wen,G.Y.: Chlorination byproducts induce gender specific autistic-like behaviors in CD-1 mice. Neurotoxicology, 2011, 32, p. 545-553 doi: 10.1016/j.neuro.2011.06.008
  • [138] Vlaanderen J., van Veldhoven K., Font-Ribera L., Villanueva C.M., Chadeau-Hyam M., Portengen L., Grimalt J.O., Zwiener C., Heederik D., Zhang X., Vineis P., Kogevinas M., Vermeulen R.: Acute changes in serum immune markers due to swimming in a chlorinated pool. Environ Int., 2017, 105, p. 1-11 doi: 10.1016/j.envint.2017.04.009.
  • [139] Babu R.V., Cardenas V., Sharma G.: Acute respiratory distress syndrome from chlorine inhalation during a swimming pool accident: a case report and review of the literature. J Intensive Care Med., 2008, 23, p. 275-80 doi: 10.1177/0885066608318471
  • [140] Voisin C., Sardella A., Marcucci F., Bernard A.: Infant swimming in chlorinated pools and the risks of bronchiolitis, asthma and allergy. Eur Respir J., 2010, 36(1), p. 41-47 doi: 10.1183/09031936.00118009
  • [141] Löfstedt H., Westerlund J., Graff P., Bryngelsson I.L., Mölleby G., Olin A.C., Eriksson K., Westberg H.: Respiratory and Ocular Symptoms Among Employees at Swedish Indoor Swimming Pools. J Occup Environ Med., 2016, 58(12), p. 1190-1195 doi: 10.1097/JOM.0000000000000883
  • [142] Llana-Belloch S., Priego Quesada J.I., Pérez-Soriano P., Lucas-Cuevas Á.G., Salvador-Pascual A., Olaso-González G., Moliner-Martinez Y., Verdú-Andres J., Campins-Falco P., Gómez-Cabrera M.C.: Disinfection by-products effect on swimmers oxidative stress and respiratory damage. Eur J Sport Sci., 2016, 16(5), p. 609-617 doi: 10.1080/17461391.2015.1080306
  • [143] Päivinen M., Keskinen K., Putus T., Kujala U.M., Kalliokoski P., Tikkanen H.O.: Asthma, allergies and respiratory symptoms in different activity groups of swimmers exercising in swimming halls. BMC Sports Sci Med. Rehabil., 2021, 13(1), p. 119 doi: 10.1186/s13102-021-00349-2
  • [144] Voisin C., Sardella A., Bernard A.: Risks of new-onset allergic sensitization and airway inflammation after early age swimming in chlorinated pools. Int J Hyg Environ Health, 2014, 217(1), p. 38-45 doi: 10.1016/j.ijheh.2013.03.004
  • [145] Kanikowska A., Napiórkowska-Baran K., Graczyk M., Kucharski M.A.: Influence of chlorinated water on the development of allergic diseases - An overview. Ann Agric Environ Med., 2018, 25(4), p. 651-655 doi: 10.26444/aaem/79810
  • [146] Carbonnelle S., Francaux M., Doyle I., Dumont X., de Burbure C., Morel G., Michel O., Bernard A.: Changes in serum pneumoproteins caused by short-term exposures to nitrogen trichloride in indoor chlorinated swimming pools. Biomarkers, 2002, 7(6), p. 464-478 doi: 10.1080/13547500210166612
  • [147] Bernard A., Carbonnelle S., Dumont X., Nickmilder M.: Infant swimming practice, pulmonary epithelium integrity, and the risk of allergic and respiratory diseases later in childhood. Pediatrics., 2007, 119(6), p. 1095-1103 doi: 10.1542/peds.2006-3333
  • [148] Bernard A., Nickmilder M., Voisin C.: Outdoor swimming pools and the risks of asthma and allergies during adolescence. Eur Respir J., 2008, 32(4), p. 979-88 doi: 10.1183/09031936.00114807
  • [149] Andersson M., Backman H., Nordberg G., Hagenbjörk A., Hedman L., Eriksson K., Forsberg B., Rönmark E.: Early life swimming pool exposure and asthma onset in children - a case-control study. Environ Health., 2018, 17(1), p. 34 doi: 10.1186/s12940-018-0383-0
  • [150] Lévesque B., Duchesne J.F., Gingras S., Lavoie R., Prud’Homme D., Bernard E., Boulet L.P., Ernst P.: The determinants of prevalence of health complaints among young compete tive swimmers. Int Arch Occup Environ Health., 2006, 80(1), p. 32-39 doi: 10.1007/s00420-006-0100-0.
  • [151] Bougault V., Turmel J., Levesque B., Boulet L.P.: The respiratory health of swimmers. Sports Med., 2009, 39(4), p. 295-312 doi: 10.2165/00007256-200939040-00003
  • [152] Fisk M.Z., Steigerwald M.D., Smoliga J.M., Rundell K.W.: Asthma in swimmers: a review of the current literature. Phys Sportsmed., 2010, 38(4), p. 28-34 doi: 10.3810/psm.2010.12.1822.
  • [153] Boulet L.P.: Cough and upper airway disorders in elite athletes: a critical review. Br J Sports Med., 2012, 46(6), p. 417-421 doi: 10.1136/bjsports-2011-090812
  • [154] Päivinen M., Putus T., Kalliokoski P., Tikkanen H.: Airway obstruction in competitive swimmers. Health, 2013, 5, p. 460-464. doi: 10.4236/health.2013.53062
  • [155] Päivinen M.K., Keskinen K.L., Tikkanen H.O.: Swimming and Asthma: Differences between Women and Men. J Allergy (Cairo), 2013, p. 520913 doi: 10.1155/2013/520913
  • [156] Goodman M., Hays S.: Asthma and swimming: a meta-analysis. J Asthma, 2008, 45(8), p. 639-647 doi: 10.1080/02770900802165980
  • [157] Rosimini C.: Benefits of swim training for children and adolescents with asthma. J Am Acad Nurse Pract., 2003, 15(6), p. 247-252 doi: 10.1111/j/1745-7599.2003.tb00394.x
  • [158] Font-Ribera L., Villanueva C.M., Nieuwenhuijsen M.J., Zock J.P., Kogevinas M., Henderson J.: Swimming pool attendance, asthma, allergies, and lung function in the Avon Longitudinal Study of Parents and Children cohort. Am J Respir Crit Care Med., 2011, 183(5), p. 582-58
  • [159] Weisgerber M.C., Guill M., Weisgerber J.M., Butler H.: Benefits of swimming in asthma: effect of a session of swimming lessons on symptoms and PFTs with review of the literature. J Asthma, 2003, 40(5), p. 453-464 doi: 10.1081/jas-120018706
  • [160] Valeriani F., Protano C., Vitali M., Romano Spica V.: Swimming attendance during childhood and development of asthma: Meta analysis. Pediatr Int., 2017, 59(5), p. 614-621 doi: 10.1111/ped.13230
  • [161] Ramachandran H.J., Jiang Y., Shan C.H., Tam W.W.S., Wang W.: A systematic review and meta-analysis on the effectiveness of swimming on lung function and asthma control in children with asthma. Int J Nurs Stud., 2021, 120, p. 103953 doi: 10.1016/j.ijnur-stu.2021.10395
  • [162] Kohlhammer Y., Döring A., Schäfer T., Wichmann H.E., Heinrich J.: KORA Study Group. Swimming pool attendance and hay fever rates later in life. Allerg, 2006, 61(11), p. 1305-1309 doi: 10.1111/j.1398-9995.2006.01229.x
  • [163] Rasmussen F., Lambrechtsen J., Siersted H.C., Hansen H.S., Hansen N.C.: Low physical fitness in childhood is associated with the development of asthma in young adulthood: the Odense schoolchild study. Eur Respir J., 2000, 16(5), p. 866-870 doi: 10.1183/09031936.00.16586600
  • [164] Sherriff A., Maitra A., Ness A.R., Mattocks C., Riddoch C., Reilly J.J., Paton J.Y., Henderson A.J.: Association of duration of television viewing in early childhood with the subsequent development of asthma. Thorax., 2009, 64(4), p. 321-325 doi: 10.1136/thx.2008.104406
  • [165] Shaaban R., Leynaert B., Soussan D., Antó J.M., Chinn S., de Marco R., Garcia-Aymerich J., Heinrich J., Janson C., Jarvis D., Sunyer J., Svanes C., Wjst M., Burney P.G., Neukirch F., Zureik M.: Physical activity and bronchial hyperresponsiveness: European Community Respiratory Health Survey II. Thorax., 2007, 62(5), p. 403-10 doi: 10.1136/thx.2006.068205
  • [166] Muellner M.G., Wagner E.D., Mccalla K., Richardson S.D., Woo Y.T., Plewa M.J.: Haloacetonitriles vs. regulated haloacetic acids: are nitrogen-containing DBFs more toxic? Environ. Sci. Technol., 2007, 41, p. 645-651 doi: 10.1021/es0617441
  • [167] Plewa M.J., Wagner E.D., Muellner M.G., Hsu K.-M., Richardson S.D.: Comparative mammalian cell toxicity of N-DBPs and C-DBPs. In: Disinfection By-Products in Drinking Water, ACS Symposium Series, American Chemical Society, Washington DC, 2008 doi: 10.1021/bk-2008-0995.ch003
Uwagi
1. Praca została sfinansowana ze środków statutowych Wydziału Inżynierii Środowiska i Energetyki Politechniki Śląskiej w Gliwicach.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f12e0695-a0c3-4e53-8804-84d54a2195b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.