PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamics of suspended sediment load with respect to summer discharge and temperatures in Shaune Garang glacierized catchment, Western Himalaya

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The observed and predicted rise in temperature will have deleterious impact on melting of snow and ice and form of precipitation which is already evident in Indian Himalayan Region. The temperature-dependent entities like discharge and sediment load will also vary with the observed and predicted rise posing environmental, social and economic threat in the region. There is little known about sediment load transport in relation to temperature and discharge in glacierized catchments in Himalaya mainly due to the scarcity of ground-based observation. The present study is an attempt to understand the suspended sediment load and transportation in relation to variation in discharge and temperature in the Shaune Garang catchment. The result shows strong dependence of sediment concentration primarily on discharge (R2 = 0.84) and then on temperature (R2 = 0.79). The catchments with similar geological and climate setting were observed to have comparatively close weathering rate. The sediment load was found to be higher in the catchments in eastern and central part of Indian Himalayan Region in comparison with western part due to dominance of Indian Summer Monsoon leading to high discharge. The annual physical weathering rate in Shaune Garang catchment was found to be 411 t km−2 year−1 which has increased from 327 t km−2 year−1 in around three decades due to rise in temperature causing increase in discharge and proportion of debris-covered glacierized area.
Czasopismo
Rocznik
Strony
1109--1120
Opis fizyczny
Bibliogr. 57 poz.
Twórcy
autor
  • Department of Environmental Science Sharda University Greater Noida India
autor
  • Department of Environmental Science Sharda University Greater Noida India
autor
  • Department of Environmental Science Sharda University Greater Noida India
autor
  • Department of Environmental Science Sharda University Greater Noida India
autor
  • Division of Space Technology, Department of Computer Science, Electrical and Space Engineering Lulea University of Technology Lulea Sweden
autor
  • Environmental Biology Laboratory, Department of Zoology Patna University Patna India
  • State Council for Science, Technology and Environment Shimla India
autor
  • Ministry of Earth Science New Delhi India
Bibliografia
  • 1. Bajracharya SR, Shrestha B (eds) (2011) The status of glaciers in the Hindu Kush-Himalayan region. International Centre for Integrated Mountain Development (ICIMOD), Kathmandu
  • 2. Bhardwaj A, Singh MK, Joshi PK (2015a) A lake detection algorithm (LDA) using Landsat 8 data: a comparative approach in glacial environment. Int J Appl Earth Obs Geoinf 38:150–163. https://doi.org/10.1016/j.jag.2015.01.004
  • 3. Bhardwaj A, Joshi PK, Snehmani, Sam L, Singh MK, Singh S, Kumar R (2015b) Applicability of Landsat 8 data for characterising glacier facies and supraglacial debris. Int J Appl Earth Obs Geoinf 38:51–64. https://doi.org/10.1016/j.jag.2014.12.011
  • 4. Bhardwaj A, Sam L, Singh S, Kumar R (2016) Automated detection and temporal monitoring of crevasses using remote sensing and their implications for glacier dynamics. Ann Glaciol. https://doi.org/10.3189/2016AoG71A496
  • 5. Bialik RJ, Karpiński M, Rajwa A, Luks B, Rowiński PM (2014) Bedform characteristics in natural and regulated channels: a comparative field study on the Wilga River, Poland. Acta Geophysica. 62(6):1413–1434. https://doi.org/10.2478/s11600-014-0239-0
  • 6. Bishop MP, Shroder JJF, Betty BL, Copeland L (1998) Scale-dependent analysis of satellite imagery for characterization of glacier surfaces in the Karakoram Himalaya. Geomorphology 21:217–232. https://doi.org/10.1016/S0169-555X(97)00061-5
  • 7. Bolch T, Kulkarni AV, Kääb A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M (2012) The state and fate of Himalayan glaciers. Science 336:310–314. https://doi.org/10.1126/science.1215828
  • 8. Bookhagen B, Thiede RC, Manfred RS (2005) Abnormal monsoon years and their control on erosion and sediment f lux in the high, arid northwest Himalaya. Earth Planet Sci Lett 231:131–146. https://doi.org/10.1016/j.epsl.2004.11.014
  • 9. Bruijnzeel A, Bremmer NN (1989) Highland and lowland interaction in the Ganges-Brahmaputra river basin: a review of published literature, Occasional pare no. 11, International Center for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal
  • 10. Carenzo M, Pellicciottib F, Mabillard J, Reid T, Brockb BW (2016) An enhanced temperature index model for debris-covered glaciers accounting for thickness effect. Adv Water Resour 94:457–469. https://doi.org/10.1016/j.advwatres.2016.05.001
  • 11. Costa A, Anghileri D, Molnar P (2018) Hydroclimatic control on suspended sediment dynamics of a regulated Alpine catchment: a conceptual approach. Hydrol Earth Syst Sci 22:3421–3434. https://doi.org/10.5194/hess-22-3421-2018
  • 12. Dimri AP (2004) Impact of horizontal model resolution and orography on the simulation of a western disturbance and its associated precipitation. Meteorol Appl 11:115–127. https://doi.org/10.1017/S1350482704001227
  • 13. Dutta S, Mujtaba SAI, Saini HS, Chunchekar R, Kumar P (2017) Geomorphic evolution of glacier-fed Baspa Valley, NW Himalaya: record of Late Quaternary climate change, monsoon dynamics and glacial fluctuations. In: Pant NC, Ravindra R, Srivastava D, Thompson LG (eds) The Himalayan cryosphere: past and present, vol Special Publications, 462. Geological Society, London
  • 14. Hammer KM, Smith ND (1983) Sediment production and transport in a proglacial stream: Hilda Glacier, Alberta, Canada. Boreas 12:91–106. https://doi.org/10.1111/j.1502-3885.1983.tb00441.x
  • 15. Haritashya UK, Singh P, Kumar N, Gupta RP (2006) Suspended sediment from the Gangotri Glacier: quantification, variability, and associations with discharge and air temperature. J Hydrol 321:116–130. https://doi.org/10.1016/j.jhydrol.2005.07.037
  • 16. Hasnain SI, Chauhan DS (1993) Sediment transfer in the glaciofluvial environment-a Himalayan perspective. Environ Geol 22:205. https://doi.org/10.1007/BF00767405
  • 17. Hasnain SI, Thayyen RJ (1999) Discharge and suspended sediment concentration of melt waters, draining from the Dokriani glacier, Garhwal Himalaya, India. J Hydrol 218:191–198. https://doi.org/10.1016/S0022-1694(99)00033-5
  • 18. Immerzeel WW, Verbeek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328:1382–1385. https://doi.org/10.1126/science.1183188
  • 19. Immerzeel WW, Pellicciotti F, Bierkens MFP (2013) Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat Geosci 6:742–745. https://doi.org/10.1038/ngeo1896
  • 20. Jeelani G, Deshpande RD (2017) Isotope fingerprinting of precipitation associated with western disturbances and Indian summer monsoons across the Himalayas. J Earth Syst Sci 126:108. https://doi.org/10.1007/s12040-017-0894-z
  • 21. Kociuba W (2016) Determination of the bedload transport rate in a small proglacial High Arctic stream using direct, semi-continuous measurement. Geomorphology 287:10–115. https://doi.org/10.1016/j.geomorph.2016.10.001
  • 22. Kociuba W, Janicki G (2014) Continuous measurements of bedload transport rates in a small glacial river catchment in the summer season (Spitsbergen). Geomorphology 212:58–71. https://doi.org/10.1016/j.geomorph.2013.05.001
  • 23. Kociuba W, Janicki G (2015) Changeability of movable bed-surface particles in natural, gravel bed channels and its relation to bedload grain size distribution (Scott River, Svalbard). Geogr Ann 97:507–521. https://doi.org/10.1111/geoa.12090
  • 24. Kociuba W, Janicki G (2018) Effect of meteorological patterns on the intensity of Streambank Erosion in a Proglacial Gravel-Bed River (Spitsbergen). Water. https://doi.org/10.3390/w10030320
  • 25. Kociuba W, Janicki G, Siwek K (2014) Variability of sediment transport in the Scott River catchment (Svalbard) during the hydrologically active season of 2009. Quaest. Geogr 33:39–49. https://doi.org/10.2478/quageo-2014-0011
  • 26. Kostrzewski A, Kaniecki A, Kapuscinski J, Klimaczak R, Stach A, Zwolinski Z (1989) The dynamics and rate of denudation of glaciated and non-glaciated catchments, central Spitsbergen. Pol Polar Res 10:317–367
  • 27. Kumar K, Miral MS, Joshi V, Panda YS (2002) Discharge and suspended sediment in the meltwater of Gangotri Glacier, Garhwal Himalaya, India. Hydrol Sci J 47(4):611–619. https://doi.org/10.1080/02626660209492963
  • 28. Kumar R, Singh S, Randhawa SS, Singh KK, Rana JC (2014) Temperature trend analysis in the glacier region of Naradu Valley, Himachal Himalaya, India. CR Geosci 346(9–10):213–222. https://doi.org/10.1016/j.crte.2014.09.001
  • 29. Kumar R, Singh S, Kumar R, Singh A, Bhardwaj A, Sam L, Randhawa SS, Gupta A (2016) Development of a Glacio-hydrological Model for Discharge and Mass Balance Reconstruction. J Water Resour Manag. https://doi.org/10.1007/s11269-016-1364-0
  • 30. Kumar R, Kumar R, Singh A, Sinha RK, Kumari A (2018) Nanoparticles in glacial meltwater. Mater Today Proc 5(3P1):9161–9166. https://doi.org/10.1016/j.matpr.2017.10.037
  • 31. Lu S, Si J, Qi Y, Wang Z, Wu X, Hou C (2016) Distribution characteristics of TOC, TN and TP in the Wetland Sediments of Longbao Lake in the San-Jiang Head Waters. Acta Geophys 64:2471. https://doi.org/10.1515/acgeo-2016-0093
  • 32. Lutz AF, Immerzeel WW, Shrestha AB, Bierkens MFP (2014) Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat Clim Change 4:587–592. https://doi.org/10.1038/nclimate2237
  • 33. Mir RA, Jain SK, Jain SK, Thayyen RJ, Saraf AK (2017) Assessment of recent glacier changes and its controlling factors from 1976 to 2011 in Baspa basin, western Himalaya. Arct Antarct Alp Res 49(4):621–647. https://doi.org/10.1657/AAAR0015-070
  • 34. Oliva M, Ruiz-Fernández J (2015) Coupling patterns between para-glacial and permafrost degradation responses in Antarctica. Earth Surf Process Landf 40:1227–1238. https://doi.org/10.1002/esp.3716
  • 35. Oliva M, Ruiz-Fernández J (2016) Geomorphological processes and frozen ground conditions in Elephant Point (Livingston Island, South Shetland Islands, Antarctica). Geomorphology. https://doi.org/10.1016/j.geomorph.2016.01.020
  • 36. Priya N, Thayyen RJ, Ramanathan AL, Singh VB (2016) Hydrochemistry and dissolved solute load of meltwater in a catchment of cold-arid trans-Himalayan region of Ladakh over an entire melting period. Hydrol Res 47(6):1224–1238. https://doi.org/10.2166/nh.2016.156
  • 37. Puri VMK (1999) Glaciohydrological and suspended sediment load studies in the melt water channel of Changme Khangpu Glacier, Mangam district, Sikkim. In: Symposium on snow, ice and glaciers—Himalayan Prospective, Lucknow, p1
  • 38. Puri VMK, Swaroop S (1995) Relationship of Glacierized area and summer mean daily discharge of glacier basins in Jhelum, Satluj and Alaknanda catchments in North western Himalaya. Geol Surv India Spec Publ 21(2):315–319
  • 39. Raina VK (2009) Himalayan glaciers: a state-of-art review of glacial studies. Glacial Retreat and climate change, Ministry of Environment and Forest discussion paper
  • 40. Sam L, Bhardwaj A, Singh S, Kumar R (2015) Remote sensing in glacier velocity estimation and a novel approach for debris-covered glaciers. Prog Phys Geogr. https://doi.org/10.1177/0309133315593894
  • 41. Sharma P, Ramanathan AL, Pottakkal JG (2013) Study of solute sources and evolution of hydro-geochemical processes of the Chhota Shigri Glacier meltwaters, Himachal Himalaya, India. Hydrol Sci J 58(5):1128–1143. https://doi.org/10.1080/02626667.2013.802092
  • 42. Singh AK, Hasnain SI (1998) Major ion chemistry and weathering control in a high altitude basin: Alaknanda River, Garhwal Himalaya, India. Hydrol Sci J 43(6):825–884. https://doi.org/10.1080/02626669809492181
  • 43. Singh VB, Ramanathan A (2018) Suspended sediment dynamics in the meltwater of Chhota Shigri glacier, Chandra basin, Lahaul-Spiti valley, India. J Mt Sci. https://doi.org/10.1007/s11629-017-4554-1
  • 44. Singh P, Ramashastri KS (1999) Temporal distribution of Dokriani glacier melt runoff and its relationship with meteorological parameters. Technical report submitted to Department of Science and Technology, Government of India
  • 45. Singh P, Haritashya U, Kumar N (2004) Seasonal changes in meltwater storage and drainage characteristics of the Dokriani Glacier, Garhwal Himalayas (India). Hydrol Res 35(1):15–29. https://doi.org/10.2166/nh.2004.0002
  • 46. Singh VB, Ramanathan AL, Pottakkal JG, Kumar M (2014) Seasonal variation of the solute and suspended sediment load in Gangotri Glacier meltwater, central Himalaya, India. J Asian Earth Sci 79:224–234. https://doi.org/10.1016/j.jseaes.2013.09.010
  • 47. Singh VB, Ramanathan AL, Mandal A, Angchuk T (2015) Transportation of suspended sediment from meltwater of the Patsio Glacier Western Himalaya India. Proc Natl Acad Sci India Sect A Phys Sci 85(1):169–175. https://doi.org/10.1007/s40010-015-0198-0
  • 48. Singh S, Kumar R, Bhardwaj A, Sam L, Shekhar M, Singh A, Kumar R, Gupta A (2016) Changing climate and glacio-hydrology in Indian Himalayan Region: a review. Wiley Interdiscip Rev Clim Change 7(3):393–410. https://doi.org/10.1002/wcc.39
  • 49. Singh S, Kumar R, Bhardwaj A, Kumar R, Singh A (2018) Changing climate and glacio-hydrology: a case study of Shaune Garang basin, Himachal Pradesh. Int J Hydrol Sci Technol. https://doi.org/10.1504/IJHST.2018.10010353
  • 50. Srivastava D, Kumar A, Verma A, Swaroop S (2014) Characterization of suspended sediment in Meltwater from Glaciers of Garhwal Himalaya. Hydrol Process 28:969–979. https://doi.org/10.1002/hyp.9631
  • 51. Stovin VR, Guymer I (2013) A practical model to describe temporal variations in total suspended solids concentrations in highway runoff. Acta Geophys 61(3):706–731. https://doi.org/10.2478/s11600-013-0101-9
  • 52. Sziło J, Bialik RJ (2017) Bedload transport in two creeks at the ice-free area of the Baranowski Glacier, King George Island, West Antarctica. Pol Polar Res 38:21–39. https://doi.org/10.1515/popore-2017-0003
  • 53. Sziło J, Bialik RJ (2018) Grain size distribution of bedload transport in a glaciated catchment (Baranowski Glacier, King George Island, Western Antarctica. Water. https://doi.org/10.3390/w10040360
  • 54. Szopińska M, Szumińska D, Bialik RJ, Chmiel S, Plenzler J, Polkowska Z (2018) Impact of a newly-formed periglacial environment and other factors on fresh water chemistry at the western shore of Admiralty Bay in the summer of 2016 (King George Island, Maritime Antarctica). Sci Total Environ 613–614:619–634. https://doi.org/10.1016/j.scitotenv.2017.09.060
  • 55. Tomecka-Suchoń S, Żogała B, Gołębiowski T, Dzik G, Dzik T, Jochymczyk K (2017) Application of electrical and electromagnetic methods to study sedimentary covers in high mountain areas. Acta Geophys 65:743–755. https://doi.org/10.1007/s11600-017-0068-z
  • 56. Wulf H, Bookhagen B, Scherler D (2010) Seasonal precipitation gradients and their impact on fluvial sediment flux in the Northwest Himalaya. Geomorphology 118:13–21. https://doi.org/10.1016/j.geomorph.2009.12.003
  • 57. Xu J, Grumbine RE, Shrestha A, Eriksson M, Yang X, Wang Y, Wilkes A (2009) The melting Himalaya: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv Biol 23:520–530. https://doi.org/10.1111/j.1523-1739
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f123e327-1a3a-4b21-9353-2453053b2113
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.