PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bleached Kraft Pulps from Blends of Wood and Hemp. Part I. Demand for Alkali, Yield of Pulps, Their Fractional Composition and Fibre Properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Roztwarzanie i bielenie mieszanek drewna i konopi. Część I. Zapotrzebowanie alkaliów, wydajność mas celulozowych, ich skład frakcyjny i właściwości włókien
Języki publikacji
EN
Abstrakty
EN
In the paper, results of the kraft pulping of blends of birch or pine with hemp stalks or a hemp-woody core composed of 80% wood and 20% hemp fibrous raw materials are presented. The unbleached kraft pulps produced were then subjected to oxygen delignification and bleaching in order to obtain bleached kraft pulps. The research performed made it possible to compare the final yield and viscosity of the bleached kraft pulps from raw material blends with those of kraft pulps from birch and pine. The effect of replacing 1/5 of birch or pine with hemp fibrous raw materials on the content of individual fractions of fibres in the bleached pulps, the relative content of fines in them, the average length and width of fibres, its coarseness and the fibres’ deformation indices was also determined. From the study it follows that better effects of replacing a part of wood in the process of production of bleached kraft pulps are achieved with hemp stalks. Blends of wood with this fibrous raw material give a higher final yield of pulps, lower content of fines and higher average fibre length than using blends of wood and a hemp woody-core.
PL
W pracy określono wydajność mas celulozowych w procesie roztwarzania metodą siarczanową mieszanek drewna brzozowego i sosnowego z łodygami konopnymi i drewnikiem konopnym. Uzyskane masy celulozowe niebielone poddano następnie procesom delignifikacji tlenowej i bielenia w celu uzyskania mas w pełni wybielonych. Badania umożliwiły porównanie wydajności końcowej, a także lepkości uzyskanych bielonych mas celulozowych z tymi wskaźnikami bielonych mas brzozowej i sosnowej. Określono również wpływ zastąpienia 1/5 drewna surowcami konopnymi na skład frakcyjny bielonych mas celulozowych, względną zawartość w nich frakcji drobnej, a także długość i szerokość włókien oraz wskaźnik ciężaru jednostki długości włókna. Badania wykazały lepsze efekty zastąpienia drewna łodygami konopnymi. Przerób mieszanek drewna z tym surowcem konopnym umożliwił bowiem uzyskanie wyższej wydajności bielonych mas celulozowych, niższej zawartości w nich frakcji drobnej i wyższej średniej długości włókien w porównaniu z tymi wskaźnikami bielonych mas celulozowych z mieszanek drewna brzozy i sosny z drewnikiem konopnym.
Rocznik
Strony
112--117
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
  • Lodz University of Technology, Institute of Papermaking and Printing, Fibrous Papermaking Pulps Technology Division, ul. Wolczanska 223, 90-924 Łódź, Poland
  • Lodz University of Technology, Institute of Papermaking and Printing, Fibrous Papermaking Pulps Technology Division, ul. Wolczanska 223, 90-924 Łódź, Poland
Bibliografia
  • 1. Bride J. Australia & New Zealand pulp & paper industry guide. APPITA Inc. 2012.
  • 2. Xiaorong N, Oinonen H. Non-wood still the main virgin fibre. Pap Puu-Pap Tim. 2007; 89: 284-286.
  • 3. Potter C. Century turns with bagasse as the favourite. PPI 1996; 38, 4: 33-36.
  • 4. Sadawarte NS. Better technology needed to clean up non-wood fibre. PPI 1995; 37(6): 84-93.
  • 5. Peatow R. Zukunft der primärfaserstoffe. Wbl. Papierfabr. 2005; 133: 15-19.
  • 6. Serrano O. Forest products – supply and demand. Przegl. Papiern. 1999; 55: 788-794.
  • 7. Kaimowitz D. From Rio to Johanesburg and beyond. Pap Puu-Pap Tim. 2004; 86: 192-196.
  • 8. McNutt JA, Rennel J. The future of fibre in tomorrow’s world. PPI. 1997; 39(2): 48-51.
  • 9. Tarnawski WZ. Permanently sustainable forest management. Przegl. Papiern. 1998; 54: 67-71 (in Polish).
  • 10. Fornalski Z. Conditions for development of the paper industry in Poland. Przegl. Papiern. 2008; 64: 233-242 (in Polish).
  • 11. Danielewicz D, Surma-Ślusarska B. Processing of industrial hemp into papermaking pulps intended for bleaching. FIBRES & TEXTILES in Eastern Europe 2010; 18: 6(83): 110-115.
  • 12. Danielewicz D, Surma-Ślusarska B. Oxygen delignification and bleaching of industrial hemp pulps. FIBRES & TEXTILES in Eastern Europe 2011; 19, 1(84): 84-88.
  • 13. Danielewicz D, Surma-Ślusarska B, Żurek G, Martyniak D. Selected grass plants as biomass fuels and raw materials for papermaking. Part I. Calorific value and chemical composition. BioResources 2015; 10: 8539-8551.
  • 14. Danielewicz D, Surma-Ślusarska B, Żurek G, Martyniak D, Kmiotek M, Dybka K. Selected grass plants as biomass fuels and raw materials for papermaking, Part II. Pulp and paper properties. BioResources 2015; 10: 8552-8564.
  • 15. Van der Werf HMG, van der Veen HJE, Bouma ATM, Ten Cate M. Quality of hemp (Cannabis sativa L. stems as a raw material for paper. Ind. Crops Prod. 1994; 2: 219-227.
  • 16. De Groot B, Van der Kolk JC, Van Dam JEG, Van T’Riet K. Papermaking characteristics of alkaline hemp-woody-core pulps. TAPPI J. 1999; 82: 107-112.
  • 17. De Groot B, Van Dam JEG, Van ’t Riet K. Alkaline pulping of hemp woody core: Kinetic modelling of lignin, xylan and cellulose extraction and degradation. Holzforschung 1995; 49:332-342.
  • 18. Dutt D, Upadhyaya JS, Malik RS, Tyagi CH. Studies on pulp and paper making characteristics of some Indian nonwoody fibrous raw material: Part-1. Cell. Chem. Technol. 2005; 39: 115-128.
  • 19. Fišerova M, Gigac J, Illa A. (2013). Soda-AQ pulping of hemp stalks and pulp properties. Pap. Celul. 68: 10-13.
  • 20. Correia F, Roy DN, Goel K. Chemistry and delignification kinetics of Canadian industrial hemp. J. Wood Chem. Technol. 2001; 21: 97-111.
  • 21. Kovacs I, Rab A, Rusznak I, Annus S. Hemp (Cannabis sativa) as a possible raw material for the paper industry. Cell. Chem. Technol. 1992; 26: 627-635.
  • 22. Zomers FHA, Gosselink,RJA, Van Dam JEG, Tjeerdsma BF. Organosolv pulping and test paper characterization of fiber hemp. TAPPI J. 1995; 78: 149-155.
  • 23. Barberà L, Pèlach MA, Pérez I, Puig J, Mutjé P. Upgrading of hemp core for papermaking purposes by means of the organosolv process. Ind. Crops Prod. 2011; 34: 865-872.
  • 24. Lisson SN. Studies of fibre hemp and flex pulps as a feedstock for Australian newsprint production. APPITA J. 2001; 54: 449-456.
  • 25. DeJong E, Van Roekel GJ, Snijder MHB, Zhang Y. Towards industrial application of bast fibre pulps. Pulp Pap. Canada. 1999;100: 19-22.
  • 26. Ekblad C, Pettersson B, Zhang J, Jernberg S, Henriksson G. Enzymatic-mechanical pulping of bast fibres from flax and hemp. Cell. Chem. Technol. 2005; 39: 95-103.
  • 27. Correia F, Roy DN, Chute W. Hemp chemical pulp: a reinforcing fibre for hardwood kraft pulps. Pulp Pap. Canada 2003;104: 51-54.
  • 28. Correia F, Roy DN, Goel K. Pulping of Canadian industrial hemp (Cannabis sativa L.). Pulp Pap. Canada 1998; 99: 39-41.
  • 29. Abdul-Karim LA, Rab A, Polyànszky É, Rusznàk I. Kinetics of delignification in kraft pulping of wheat straw and hemp. TAPPI J. 1995; 78: 161-164.
  • 30. Dang V, Nguyen KL. Characterisation of the heterogeneous alkaline pulping kinetics of hemp woody-core. Bioresource Technol. 2006; 97:1353-1359.
  • 31. Miao C, Hui LF, Liu Z, Tang X. Evaluation of hemp root bast as a new material for papermaking. Bioresources. 2014; 9: 132-142.
  • 32. Mustata A. Mechanical behavior in the wet and dry stage of Romanian yarns made from flax and hemp. FIBRES & TEXTILES in Eastern Europe 2010; 18, 3(80): 7-12.
  • 33. Mustata A, Mustafa FSC. Moisture absorption and desorption of flax and hemp fibres and yarns. FIBRES & TEXTILES in Eastern Europe 2013; 21, 3(99): 26-30.
  • 34. PN-85/P50095.02. Fibrous papermaking semi-finished products. Determination of degree of pulping of fibrous cellulose pulp. Determination of kappa number. Polish Committee for Standardization, Warsaw, Poland, 1985.
  • 35. ISO 5351-11. Cellulose in dilute solutions – Determination of limiting viscosity number – Part 1: Method in copperethylene-diamine (CED) solution, 1981.
  • 36. ISO 2470. Paper, board and pulps – measurement of diffuse blue reflectance factor. ISO brightness. International Organization for Standardization, Geneva, Switzerland. 1999.
  • 37. Owner’s manual of MorFi apparatus, TechPap, France.
  • 38. Wandelt P. Technology of cellulose and paper. Technology of fibrous pulps. WSP. Warszawa, 1996 (book).
  • 39. Westin C, Kettunen A, Rämark H, Kylmäla J, Laaksonen M. Experience from the start-up and operation of Kymi Paper’s hydraulic digester. Pap Puu-Pap Tim. 2002; 84: 38-41.
  • 40. Westin C, Kettunen A, Rämark H, Kylmäla J, Laaksonen M, Archén S. Experiences of softwood cooking in the downflow Lo-Soilds/EAPC mode at Kuusanniemi pulp mill. Pap Puu-Pap Tim. 2004; 86: 218-224.
  • 41. Kostic M, Pejic B, Skundric P. Quality of chemically modified hemp fibres. Bioresource Technol. 2008; 99: 94-99.
  • 42. Dickison WC. Integrative Plant Anatomy. Harcourt/Academic Press, New York, NY, USA, 2000.
  • 43. Amaducci S, Gusovius H-J. Hemp – cultivation, extraction and processing. In: Industrial application of natural fibres. Ed. by J. Müssig, A. John Wiley and Sons, Ltd., Publication, United Kingdom, 2000.
  • 44. Amaducci S, Pelatti F, Medeghini Bonatti P. Fibre development in hemp (Cannabis sativa L.) as affected by agrotechnique: preliminary results of a microscopic study. J. Ind. Hemp. 2005; 10: 31-48.
  • 45. Cierpucha W, Kozłowski R, Mańkowski J, Waśko J, Mańkowski T. Applicability of flax and hemp as a raw materials for production of cotton-like fibres and blended yarns in Poland. FIBRES & TEXTILES in Eastern Europe 2004; 12, 3(47): 13-18.
  • 46. Tikkaja E. Fibre dimensions: their effect on paper properties and required measuring accuracy. Pulp Pap. Canada 1999; 100: T386-388.
  • 47. Brindley C, Kibblewhite RP. Comparison of refining response of eucalypt and a mixed hardwood pulp and their blends with softwood. APPITA J. 1996; 49: 37-42.
  • 48. Mohlin U-B, Hornatowska J. Fibre and sweet properties of Accacia and Eucaluptus. APPITA J. 2006; 59: 225-230.
  • 49. Stockman L. The influence of some morphological factors on the quality of spruce sulphite and pine sulphate pulps. Svensk Papperst. 1962; 65: 978-982.
  • 50. Clark JA Effects of fibre coarseness and length. I. Bulk, burst, tear, fold and tensile tests. TAPPI J. 1962; 45: 628-634.
  • 51. Wangaard FF, Williams DL. Fiber length and fiber strength in relation to tearing resistance of hardwood. TAPPI J. 1970; 53: 2153-2154.
  • 52. Seth RS, Page DH. Fibre properties and tearing resistance. TAPPI J. 1988; 71: 103-107.
  • 53. Danielewicz D, Surma-Ślusarska B. Characterization of bleached hemp pulps with the use of computer image analysis method. FIBRES & TEXTILES in Eastern Europe 2011; 19, 2(85): 96-101.
  • 54. Danielewicz D, Surma-Ślusarska B. Properties and fibre characterization of bleached hemp, birch and pine pulps: a comparison. Cellulose 2017; 24: 5173-5186.
  • 55. Paavilainen L. Importance of cross-dimensional fibre properties and coarseness for characterisation of softwood sulphate pulp. Pap Puu-Pap Tim. 1993; 75: 343-351.
  • 56. Gustavsson L, Olsson S-E, Ragnar M, Saetheråsen J, Snekkenes S. The Compact solution. PPI, 2005; 47(10): 29-33
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1229452-f75b-4c0e-bceb-a22fc35a8a7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.