Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Geometry of plate heat exchangers (PHE) is characterized by a complex net of narrow channels. It enhances turbulence and results in better heat transfer performance. Theoretically, larger number of channels (plates) should proportionally increase the PHE heat power capacity. In practice a nonuniform massflow distribution in consecutive flow channels can significantly deteriorate the overall heat exchange performance. The flow maldistribution is one of the most commonly reported exploitation problems and is present in PHE with and without phase-change flows. The presented paper investigates numerically a flow pattern in PHE with evaporation of R410A refrigerant. Various sizes of PHE are considered. The paper introduces a robust methodology to transform the complicated geometry of a real 3D PHE to its 2D representation. It results in orders of magnitude faster calculations and allows for fast evaluation of different geometrical changes of PHE and their effect on flow maldistribution.
Czasopismo
Rocznik
Tom
Strony
57--82
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Wrocław University of Science and Technology, Department of Cryogenic, Aeronautic and Process Engineering, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Wrocław University of Science and Technology, Department of Cryogenic, Aeronautic and Process Engineering, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Wrocław University of Science and Technology, Department of Cryogenic, Aeronautic and Process Engineering, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- [1] Mueller A. C., Chiou J.P.: Review of various types of flow maldistribution in heat exchangers. Heat Transfer Eng. 9(1988), 2, 36–50. DOI:10.1080/01457638808939664.
- [2] Pacio J.C., Dorao C.A.: A study of the effect of flow maldistribution on heat transfer performance in evaporators. Nucl. Eng. Des. 240(2010), 11, 3868–3877. DOI:10.1016/j.nucengdes.2010.09.004.
- [3] Chowdhury K., Sarangi S.: Effect of flow maldistribution on multipassage heat exchanger performance. Heat Transfer Eng. 6(1985), 4, 45–54. DOI:10.1080/01457638508939638
- [4] Fleming R.B.: The effect of flow distribution in parallel channels of counterflow heat exchangers. In: Advances in Cryogenic Engineering (K.D. Timmerhaus, Ed.). Springer, Boston 1967, 352–362.
- [5] Jung J., Jeong S.: Effect of flow mal-distribution on effective NTU in multichannel counter-flow heat exchanger of single body. Cryogenics 47(2007), 4, 232–242. DOI:10.1016/j.cryogenics.2007.01.004.
- [6] Pawar N., Maurya R.S.: Flow maldistribution in a simplified plate heat exchanger model-a numerical study. In: Appl. Mech. and Mater. 110(2012), Trans Tech Publ, 2529–2536.
- [7] Klugmann M., Dabrowski P., Mikielewicz D.: Pressure drop related to flow maldistribution in a model minichannel plate heat exchanger. Arch. Thermodyn. 39(2018), 2, 123–146. DOI: 10.1515/aoter-2018-0015.
- [8] Wang Z.-Z., Zhao Z.-N.: Analysis of performance of steam condensation heat transfer and pressure drop in plate condensers. Heat Transfer Eng. 14(1993), 4, 32–41. DOI:10.1080/01457639308939809.
- [9] Wang L., Christensen R., Sunden B.: An experimental investigation of steam condensation in plate heat exchangers. Int. J. of Heat Exch. 1(2000), 2, 125–150.
- [10] Bobbili P.R., Sunden B.: Steam condensation in parallel channels of plate heat exchangers. In Proc. ASME Int. Mechanical Engineering Cong. Expo.: Vol. 7, Fluid Flow, Heat Transfer and Thermal Systems; Pts. A and B, 2010, 851–857. DOI:10.1115/IMECE2010-39974.
- [11] Vist S., Pettersen J.: Two-phase flow distribution in compact heat exchanger manifolds. Exp. Therm. Fluid Sci. 28(2004), 2, 209–215. DOI: 10.1016/S0894-1777(03)00041-4.
- [12] Sterner D., Sunden B.: Performance of Plate Heat Exchangers for Evaporation of Ammonia. Heat Transfer Eng.27(2006), 5, 45–55. DOI:49510.1080/01457630600559611.
- [13] Lin Y.-H., Li G.-C., Yang C.-Y.: An experimental observation of the effect of flow direction for evaporation heat transfer in plate heat exchanger. Appl. Therm. Eng. 88(2015), 425–432. DOI:10.1016/j.applthermaleng.2014. 11.074.
- [14] Jensen J.K., Kaernl M.R., Ommen T.S., Brix W., Reinholdt L., Elmeegard B.: Effect of liquid/vapour maldistribution on the performance of plate heat exchanger evaporators. In: Proc. 24th IIR Int. Cong. of Refrigeration, 2015.
- [15] Wen J., Li Y., Wang S., Zhou A.: Experimental investigation of header configuration improvement in plate–fin heat exchanger. Appl. Therm. Eng. 27(2007), 11, 1761–1770. DOI:10.1016/j.applthermaleng.2007.01.004.
- [16] Raul A., Bhasme B.N., Maurya R.S.: A numerical investigation of fluid flow maldistribution in inlet header configuration of plate fin heat exchanger. Energy Procedia 90(2016), 267–275. DOI:10.1016/j.egypro.2016.11.194.
- [17] Peng X., Liu Z., Qiu C., Tan J.: Effect of inlet flow maldistribution on the passage arrangement design of multi-stream plate-fin heat exchanger. Appl. Therm. Eng. 103(2016), 67–76. DOI:10.1016/j.applthermaleng.2016.04.072.
- [18] Yuan P., Jiang G.B., He Y.L., Yi X.L., Tao W.Q.: Experimental study on the performance of a novel structure for two-phase flow distribution in parallel vertical channels. Int. J. Multiphase Flow 53(2013), 65–74. DOI:10.1016/j.ijmultiphaseflow.2012.05.006.
- [19] Srihari N., Rao B.P., Sunden B., Das S.K.: Transient response of plate heat exchangers considering effect of flow maldistribution. Int. J. Heat Mass Transfer 48(2005), 15, 3231–3243. DOI:10.1016/j.ijheatmasstransfer.2005.02.032.
- [20] Malecha Z., Płuszka P., Brenk A.: Numerical investigation of cryogen regasification in a plate heat exchanger. IOP Conf. Ser. Mater. Sci. Eng. 278(2017), 1, 012063. DOI:10.1088/1757-899X/278/1/012063.
- [21] Malecha Z.M., Malecha K.: Numerical analysis of mixing under low and high frequency pulsations at serpentine micromixers. Chem. Process. Eng. 35(2014), 3, 369–385.
- [22] White F.M.: Fluid Mechanics (4th Edn.). McGraw-Hill, 2014.
- [23] Brenk A., Płuszka P., Malecha Z.: Numerical study of flow maldistribution in multi-plate heat exchangers based on robust 2D model. Energies 11(2018), 11, 3121. DOI:10.3390/en11113121.
- [24] Weller H.G., Tabor G., Jasak H., Fureby C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(1998), 6, 620–631. DOI:10.1063/1.168744.
- [25] The Open Source CFD Toolbox User Guide, 2014.
- [26] Lee W.H.: A pressure iteration scheme for two-phase flow modeling. In: Multiphase Transport: Fundamentals, Reactor Safety, Applications (N. Veziroglu, Ed.) . Hemisphere Publishing, Washington, DC 1980.
- [27] van Wachem B.G.M., Almstedt A.E.: Methods for multiphase computational fluid dynamics. Chem. Eng. J. 96(2003), 1, 81–88. DOI:10.1016/j.cej.2003.08.025.
- [28] Baroczy C.J.: Correlation of liquid fraction in two-phase flow with applicatio to liquid metals. Chem. Eng. Prog. Symp. Ser. 57(1965), 61, 179–191.
- [29] Ranade V.V.: Computational Flow Modeling for Chemical Reactor Engineering: Vol. 5 (1st Edn.). Academic Press, San Diego 2001.
- [30] De Schepper S.C.K., Heynderickx G.J., Marin G.B.: Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker. Comput. Chem. Eng. 33(2009), 1, 122–132. DOI:10.1016/j.compchemeng.2008.07.013.
- [31] Bell I.H., Wronski J., Quoilin S., Lemort V.: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp. Ind. Eng. Chem. Res. 6(2014), 53, 2498–2508. DOI:10.1021/ie4033999.
- [32] Lewandowski M.T., Płuszka P., Pozorski J.: Numerical investigation of cryogen re-gasification in a plate heat exchanger. Int. J. Numer. Methods Heat Fluid Flow, DOI:10.1108/HFF-02-2017-0078.
- [33] Zhang Zh., Li Y.-Zh., Xu Q.: Experimental research on flow maldistribution in plate-fin heat exchangers. Chin. J. Chem. Eng. 12(2004), 1, 7–13.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f11d6564-a371-4be7-a7c3-34498dbc87c3