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1. INTRODUCTION

For linear ordinary differential equations with large parameters, a kind of Stokes
phenomena occur in the asymptotic behaviors of WKB solutions with a change of
the parameters. Such Stokes phenomena are called parametric Stokes phenomena. In
this paper we study the parametric Stokes phenomena for the Gauss hypergeometric
differential equation from the viewpoint of the alien calculus.

The alien derivative is introduced by Écalle [10] in 1981. Delabaere-Dilinger-Pham
[8] and Delabaere-Pham [9] studied the Stokes automorphisms and alien derivatives
for WKB solutions of Schrödinger equations with polynomial potentials from the
viewpoint of Ecalle’s resurgent function theory. In these articles, Stokes automor-
phisms are described by using the intersection numbers of degenerate Stokes curves
and integration paths for Voros coefficients. In this paper we apply these results to
the Gauss hypergeometric differential equation with large parameters. We also refer
to the works of Sauzin [15,16], where the relation between the Stokes automorphisms
and the alien derivatives is clarified.

Parametric Stokes phenomena for second order linear ordinary differential equa-
tions with irregular singular points are studied in several papers: Takei [17] studied
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then for the Weber equation, Koike and Takei [14] for the Whittaker equation, and
Aoki, Iwaki and Takahashi [1] for the Bessel equation. In these works, parametric
Stokes phenomena are studied by analyzing the degeneration of Stokes curves and
then calculating alien derivatives. In general, a Stokes curve emanates from a turning
point and flows into a turning point or a singular point. A Stokes curve is said to be
degenerate if it flows into a turning point. Then there are two types of degenerate
Stokes curves. A degenerate Stokes curve which emanates from a turning point and
flows into another turning point is called of Weber type, and one which flows into the
same turning point is called of loop type. In [17] and [14], Stokes curves of Weber
type are considered, and in [1] one of loop type is considered. Note that, in [8, 9, 15]
and [16], the authors treat only the case of Weber type.

The Gauss hypergeometric differential equation has three parameters, and then
there appears two types of degenerate Stokes curves. In our previous works [6] and [19],
we considered degenerate Stokes curves of Weber type, and obtained the parametric
Stokes phenomena by using the Borel sums of the Voros coefficients. In the present
paper, first we consider the same cases as in our previous works, and obtain the
parametric Stokes phenomena in another way – namely by using alien derivatives.
Next we consider the case in which degenerate Stokes curves of loop type appear. Also
in this case, we obtain the parametric Stokes phenomena by using alien derivatives.

In Section 2, we introduce the Gauss hypergeometric differential equation with
large parameters. Then we review the definition of the Voros coefficients for this equa-
tion, and give their Borel transforms. The parametric Stokes phenomena are described
in Section 3. First we divide the space of the parameters into several subregions such
that the parametric Stokes phenomena occurs at the boundaries. Then we compute
the alien derivatives to obtain the parametric Stokes phenomena. The main results
are given in Theorems 3.2, 3.5, 3.7, 3.9 and 3.10.

2. VOROS COEFFICIENTS AND BOREL TRANSFORMS OF THEM

We consider the following Schrödinger-type equation:
(
− d2

dx2
+ η2Q(x)

)
ψ = 0 (2.1)

with a large parameter η > 0. Here we set Q(x) = Q0(x) + η−2Q1(x) with

Q0(x) =
(α− β)2x2 + 2(2αβ − αγ − βγ)x+ γ2

4x2(x− 1)2

and

Q1(x) = − x2 − x+ 1

4x2(x− 1)2
,

where α, β, γ are complex parameters. Equation (2.1) is obtained from the Gauss
hypergeometric differential equation:

x(1− x)
d2w

dx2
+ (c− (a+ b+ 1)x)

dw

dx
− abw = 0.
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We put

a =
1

2
+ αη,

b =
1

2
+ βη,

c = 1 + γη

and eliminate the first-order term by taking

ψ = x
1
2 (1+γη)(1− x)

1
2 (1+(α+β−γ)η)w

as unknown function. Then we have (2.1). In this paper, we call (2.1) the Gauss
hypergeometric differential equation with large parameter η. By definition, WKB
solutions of (2.1) are the following formal solutions:

ψ± =
1√
Sodd

exp

(
±

x∫

x0

Sodd dx

)
,

where x0 is a fixed point and Sodd denotes the odd-order part in η of the formal
solution S(x) =

∑∞
l=−1 η

−lSl of the Riccati equation

dS

dx
+ S2 = η2Q(x)

associated with (2.1). (See also [12, §2] for the notation and terminologies.) Eq. (2.1)
has regular singular points b0 = 0, b1 = 1 and b2 =∞. A turning point a of (2.1) is,
by definition, a simple zero of Q0 (cf. [12, §2]).

We define a Stokes curve emanating from a by

Im

x∫

a

√
Q0 dx = 0.

A Stokes curve flows into a singular point or a turning point (cf. [12, §2]). If turning
points are connected by a Stokes curve, the Stokes geometry of (2.1) is said to be
degenerate. Let Ej (j = 0, 1, 2) be the sets defined by the following:

E0 = {(α, β, γ) ∈ C3 | αβγ(α− β)(α− γ)(β − γ)(α+ β − γ) = 0},
E1 = {(α, β, γ) ∈ C3 | Reα · Reβ · Re(γ − α) · Re(γ − β) = 0},
E2 = {(α, β, γ) ∈ C3 | Re(α− β) · Re(α+ β − γ) · Reγ = 0}.

Stokes graph of (2.1) is, by definition, a two-color sphere graph that consists of all
Stokes curves as edges, {a0, a1} as vertices of the first color and {b0, b1, b2} as vertices
of the second color (cf. [3] and [12, §3.2]).
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Theorem 2.1 ([19, Theorem 3.1]). We assume that (α, β, γ) is not contained in E0.
(i) If two distinct turning points a0 and a1 are connected by a Stokes curve, then
(α, β, γ) belongs to E1. Conversely, if (α, β, γ) is contained in E1 − E2, the Stokes
geometry of (2.1) has a Stokes curve which connects two distinct turning points a0
and a1.
(ii) If a Stokes curve forms a closed curve with a single turning point as the base
point, then (α, β, γ) belongs to E2. Conversely, if (α, β, γ) is contained in E2 − E1,
the Stokes geometry of (2.1) has a Stokes curve which forms a closed path with a
turning point as the base point.

Let Cj (j = 0, 1, 2) be a contour starting from the singular point bj , going around
a turning point in a counterclockwise direction and going back to bj . We may assume
that the other turning point and singular points are not included in Cj .

Definition 2.2 ([19]). Let Vj (j = 0, 1, 2) be the formal power series in η−1 defined
by the following integrals:

V0 = V0(α, β, γ; η) :=
1

2

∫

C0

(Sodd − ηS−1)dx,

V1 = V1(α, β, γ; η) :=
1

2

∫

C1

(Sodd − ηS−1)dx,

V2 = V2(α, β, γ; η) :=
1

2

∫

C2

(Sodd − ηS−1)dx.

Here the branch of S−1 =
√
Q0(x) on Cj(j = 0, 1, 2) is taken as follows: We take

a curve in C − {0, 1} connecting the turning points as a branch cut and choose the
branch of S−1(x) so that at the starting point bj , we have

√
Q0 ∼

γ

2x
at x = 0, (2.2)

√
Q0 ∼

α+ β − γ
2(x− 1)

at x = 1, (2.3)

√
Q0 ∼

β − α
2x

at x =∞. (2.4)

We call Vj the Voros coefficients of (2.1) with respect to bj (bj = 0, 1, 2).

Let ψ± and ψ(j)
± be the WKB solutions normalized at a turning point a (a = a0

or a = a1) and those normalized at the singular point bj (cf. [7]):

ψ± =
1√
Sodd

exp


±

x∫

a

Sodddx


 ,

ψ
(j)
± =

1√
Sodd

exp


±

x∫

bj

(Sodd − ηS−1)dx± η
∫ x

a

S−1dx


 ,
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respectively. For j = 0, 1 and 2, Vj(α, β, γ; η) describe the discrepancy between WKB
solutions ψ± and ψ(j)

± , that is, we have ψ± as

ψ± = exp(∓Vj)ψ(j)
± . (2.5)

Since Sodd dx and ηS−1 dx have a simple pole at the singular points bj and residues
at bj coincide (see [12] for the computation of residues of Sodd), these integrals are
well-defined for every homotopy class of the path of integration. Explicit forms of Vj
are given in [5,6,19] (The choices of the branch of S−1 on Cj are slightly different in
those references.):

Theorem 2.3 ([5, Theorem 2.1]). The Voros coefficients Vj have the following forms:

V0(α, β, γ; η) =
1

2

∞∑

n=2

Bnη
1−n

n(n− 1)

{
(1− 21−n)

(
1

αn−1
+

1

βn−1
+

1

(γ − α)n−1

+
1

(γ − β)n−1

)
+

2

γn−1

}
,

V1(α, β, γ; η) =
1

2

∞∑

n=2

Bnη
1−n

n(n− 1)

{
(1− 21−n)

(
1

αn−1
+

1

βn−1
− 1

(γ − α)n−1

− 1

(γ − β)n−1

)
+

2

(α+ β − γ)n−1

}
,

V2(α, β, γ; η) =
1

2

∞∑

n=2

Bnη
1−n

n(n− 1)

{
(1− 21−n)

(
1

αn−1
− 1

βn−1
− 1

(γ − α)n−1

+
1

(γ − β)n−1

)
− 2

(β − α)n−1

}
.

Here Bn are the Bernoulli numbers defined by

tet

et − 1
=
∞∑

n=0

Bn
n!
tn.

We take the Borel transforms Vj,B(α, β, γ; y) (j = 0, 1, 2) of Vj , then we obtain
the following proposition (see [12, §2.1] for the definition of the Borel transform and
[19] for the computation of Vj,B):

Proposition 2.4 ([19]). The Borel transforms Vj,B(α, β, γ; y) of the Voros coefficients
Vj have the following forms:

V0,B(α, β, γ; y) =− 1

4
{g1(α; y) + g1(β; y) + g1(γ − α; y) + g1(γ − β; y)}+ g0(γ; y),

V1,B(α, β, γ; y) =
1

4
{−g1(α; y)− g1(β; y) + g1(γ − α; y) + g1(γ − β; y)}

+ g0(α+ β − γ; y),
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V2,B(α, β, γ; y) =
1

4
{−g1(α; y) + g1(β; y) + g1(γ − α; y)− g1(γ − β; y)}
− g0(β − α; y).

Here

g0(t; y) =
1

y

(
1

exp y
t − 1

+
1

2
− t

y

)
,

g1(t; y) =
1

exp y
2t − 1

+
1

exp y
2t + 1

− 2t

y
.

For a fixed t 6= 0, g0(t; y) and g1(t; y) are holomorphic at y = 0, and they have
simple poles at y = 2tmπi (m ∈ Z − {0}) as functions of y. The residues of g0(t; y)
and g1(t; y) (j = 0, 1) are given as follows:

Res
y=2tmπi

g0(t; y) =
1

2mπi
,

Res
y=2tmπi

g1(t; y) =
(−1)m

mπi
.

3. PARAMETRIC STOKES PHENOMENA AND THE ALIEN DERIVATIVE
OF THE WKB SOLUTION

Let ωh (h = 1, 2, 3, 4) be the sets of the parameter (α, β, γ) defined by

ω1 = {(α, β, γ) ∈ C3 | 0 < Reα < Reγ < Reβ},
ω2 = {(α, β, γ) ∈ C3 | 0 < Reα < Reβ < Reγ < Reα+ Reβ},
ω3 = {(α, β, γ) ∈ C3 | 0 < Reγ < Reα < Reβ},
ω4 = {(α, β, γ) ∈ C3 | 0 < Reγ < Reα+ Reβ < Reβ},

and let ιj (j = 0, 1, 2) be involutions in the space C3 of parameters (α, β, γ) defined by

ι0 : (α, β, γ) 7→ (−α,−β,−γ),

ι1 : (α, β, γ) 7→ (γ − β, γ − α, γ),

ι2 : (α, β, γ) 7→ (β, α, γ).

Moreover, an open subset Πh (h = 1, 2, 3, 4) in C3 is defined by

Πh =
⋃

r∈G
r(ωh).

Here G is the group generated by ιj (j = 0, 1, 2). The union of Πh covers most of C3:

4⋃

h=1

Πh = C3 − {(α, β, γ) |ReαReβReγ×

Re(γ − α)Re(γ − β)Re(α− β)Re(α+ β − γ) = 0}.
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We note that the topological configuration of the Stokes graph is characterized by
its order sequence (n0, n1, n2). Here nj is the number of Stokes curves that flow into
bj (j = 0, 1, 2).

Theorem 3.1 ([4, Theorem 3.2]). Let n̂ = (n0, n1, n2) denote the order sequences of
the Stokes graph with parameter (α, β, γ).
(1) If (α, β, γ) ∈ Π1, then n̂ = (2, 2, 2).
(2) If (α, β, γ) ∈ Π2, then n̂ = (4, 1, 1).
(3) If (α, β, γ) ∈ Π3, then n̂ = (1, 4, 1).
(4) If (α, β, γ) ∈ Π4, then n̂ = (1, 1, 4).

We introduce the following notations:

ι3 =ι1ι2 : (α, β, γ) 7→ (γ − α, γ − β, γ),

ι4 =ι0ι2 : (α, β, γ) 7→ (−β,−α,−γ),

ι5 =ι0ι1 : (α, β, γ) 7→ (β − γ, α− γ,−γ),

ι6 =ι0ι1ι2 : (α, β, γ) 7→ (α− γ, β − γ,−γ).

We denote ιm(ωh) by ωhm (m = 0, 1, . . . , 6; h = 1, . . . , 4).

3.1. ANALYSIS OF STOKES CURVES OF WEBER TYPE

We derive alien derivatives and parametric Stokes phenomena on the WKB solutions
for the hypergeometric differential equation with a large parameter for the Weber
type. Several formulas describing the parametric Stokes phenomena are proved in [6]
by using Borel sums of the WKB solutions. The same formulas can be derived from the
alien derivatives, and hence, in this section, we obtain another proof of the parametric
Stokes phenomena. The notion of alien derivatives was introduced by J. Ecall [10].
We refer the reader to [15, §2], and [16, p. 78, §28], for the definition of the alien
derivative. We assume that arguments of α, β, α− γ, β − γ, γ, α+ β − γ and α− β
are mutually distinct.

3.1.1. Analysis on the boundary between ω1 and ω2

We discuss the case where (α, β, γ) is contained the boundary between ω1 and ω2,
that is, Re(γ−β) = 0. We assume that Im(β−γ) is negative. In this case, we consider
the case where (α, β, γ) = (0.5, 1− ε̂i, 1) ∈ E1. It follows from (i) of Theorem 2.1 that
we can take (α, β, γ) = (0.5, 1− ε̂i, 1) ∈ E1 without loss of generality.

We consider the WKB solutions

ψ±,k =
1√
Sodd

exp

(
±

x∫

ak

Sodd dx

)

in a neighborhood of ak (k = 0, 1). Here we take the straight line connecting ak to x
as the path of integration. We expand the WKB solutions ψ±,k as

ψ±,k = exp (ηy±,k(x))
∞∑

n=0

ψ±,n(x)η−n−
1
2 ,
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where

y±,k(x) = ±
x∫

ak

√
Qdx.

Let us show examples of Stokes curves of those two cases in Figures 3.1 and 3.3 and
a degenerate case, namely, one case of the Weber type in Figure 3.2 (cf. [6] and [19]).
Here ε > 0 and ε̂ > 0 are sufficiently small. Here open circles and closed circles are
the singular points and turning points, respectively. We place the cut as shown by
the wavy lines in Figure 3.h (h = 1, 3). In this case, we use the branch of S−1 =

√
Q0

at 0, i.e. we take the branch of S−1 as (2.2). Hence, ψ− is dominant (cf. [6] for the
computation). Let RI, RII, RI

ωh
and RII

ωh
(h = 1, 2) denote regions surrounded by

the Stokes curves as shown in Figures 3.1, 3.2 and 3.3.

Fig. 3.1. (α, β, γ)
= (0.5, 1 + ε− ε̂i, 1) in ω1

Fig. 3.2. (0.5, 1− ε̂i, 1) Fig. 3.3. (0.5, 1 − ε − ε̂i, 1)
in ω2

0 1 0 1
0 1

a0 a0 a0

a1
a1

a1

RII
ω1

RII RII
ω2

RI
ω1

RI

RI
ω2

The WKB solutions ψ±,k(k = 0, 1) (resp. ψ(0)
± ) are Borel summable in RI (resp.

RII). (See [12] and [13] for the notation and terminologies.) Let us denote the Borel
transform of ψ(0)

+ by ψ(0),I
+,B (resp. by ψ(0),II

+,B ). It follows from a result given in [13] that

the Borel transform ψ
(0),I
+,B (resp. ψ(0),II

+,B ) is free from singularities on the half line

{
y ∈ C; y = −

x∫

ak

√
Q0dx+ ρ; ρ > 0

}
. (3.1)

Moreover, the Borel transform V0,B(α, β, γ; y) of V0 is holomorphic at y = 0 and it has
simple poles at y = 2m(γ − β)πi for every non-zero integer m ∈ Z− {0}. Therefore,
the Borel transform of ψ+,k has singularities at

y = −y±,k(x) + 2m(β − γ)πi

when Re(γ − β) = 0 (m ∈ Z). The following description of the alien derivative of
the WKB solutions in the formal model is due to [1] (for the definition of the alien
derivative of the WKB solutions in the convolution model) and [17]:

4ψ+,k = B−1 log
(
L−1− L+

)
Bψ+,k. (3.2)
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Here B and L+ (resp. L−) is the Borel transformation and the Laplace transforma-
tion along a path which avoids the singular points from above (resp. from below),
respectively. We decompose (3.2) as follows:

4ψ+,k =

∞∑

m=1

4y=−y+,k+2m(β−γ)πiψ+,k

with

4y=−y+,k+2m(β−γ)πiψ+,k = B−1
[

(t
(m)
+ − t(m)

− )
∑

εn=±

p+!p−!

m!
t(m−1)εm−1

· · · t(1)ε1

]
Bψ+,k,

where t(n)+ (resp. t(n)− ) denotes the operator of analytic continuation which does not
pass the n-th singular point y = −y+,k + 2n(β − γ)πi from above (resp. below) and
p+ (resp. p−) is the number of times and εn = + (resp. εn = −) for 1 ≤ n ≤ m− 1.

Let us consider the alien derivatives 4ψ+,0 and 4ψ+,1. Since the Borel transform
V0,B of V0 is a single-valued analytic function with the simple pole at y = 2m(β−γ)πi,
we have

4y=2m(β−γ)πi (−V0)

= B−1
[∑

εk=±

p+!p−!

m!
singy=−y+,k+2m(β−γ)πit

(m−1)
εm−1

. . . t(1)ε1

]
(−V0,B)

= B−1
[
2πi Res

y=2m(β−γ)πi
(−V0,B)

]

=
(−1)m+1

2m

(cf. [17]). Hence, the chain rule in the alien calculus leads to

4y=2m(β−γ)πi(exp(−V0)) =
(−1)m+1

2m
exp (−V0). (3.3)

Since the Borel transform ψ
(0),I
+,B (resp. ψ(0),II

+,B ) is free from singularities on (3.1), we
obtain

4
(

exp(−y+,k(x)η)ψ
(0)
+

)
= 0, (3.4)

where k = 0 (resp. 1). Combining (2.5), (3.3) and (3.4), we have

4y=2m(β−γ)πi (exp(−y+,0(x)η)ψ+,0)

= 4y=2m(β−γ)πi
(

exp(−y+,0(x)η) exp(−V0(α, β, γ; η))ψ
(0)
+

)

=
(−1)m+1

2m

(
exp(−y+,0(x)η) exp(−V0(α, β, γ; η))ψ

(0)
+

)

=
(−1)m+1

2m
(exp(−y+,0(x)η)ψ+,0)
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and

4y=2m(β−γ)πi (exp(−y+,1(x)η)ψ+,1) =
(−1)m+1

2m
(exp(−y+,1(x)η)ψ+,1) .

Similarly, we can compute the alien derivatives 4y=−y−,k(x)+2m(β−γ)πiψ−,k of
ψ−,k(x, η). Hence, we obtain the following theorem.

Theorem 3.2. Let ψ±,k(x, η) denote the WKB solutions of (2.1) normalized at the
turning point ak (k = 0, 1). Let us consider the case where (α, β, γ) is contained
within the boundary between ω1 and ω2. The Borel transforms of ψ±,k(x, η) have fixed
singular points at

y = −y±,k(x) + 2m(β − γ)πi, m ∈ Z.

Furthermore, the alien derivatives 4y=−y±,k(x)+2m(β−γ)πiψ±,k of ψ±,k(x, η) (k = 0, 1)
satisfies the following relations:

(4y=−y±,0(x)+2m(β−γ)πiψ±,0)B(x, y) = ± (−1)m+1

2m
ψ±,0,B(x, y − 2m(β − γ)πi) (3.5)

for x in RI and

(4y=−y±,1(x)+2m(β−γ)πiψ+,1)B(x, y) = ± (−1)m+1

2m
ψ+,1,B(x, y − 2m(β − γ)πi) (3.6)

for x in RII.

Next we describe the actions of Stokes automorphisms on the WKB solutions. The
WKB solutions ψ±,0 (resp. ψ±,1) are Borel summable in RI

ω1
and RI

ω2
(resp. RII

ω1
and

RII
ω2
) (cf. [12] and [13] for the notation and terminologies). Let us denote the Borel

sums of ψ+,0 (resp. ψ+,1) by ψI
ω1

and ψI
ω2

(resp. by ψII
ω1

and ψII
ω2
). In this case, the

Stokes automorphism on the WKB solutions is defined by

Sψ±,k = exp
[ ∞∑

m=1

4y=−y±,k(x)+2m(β−γ)πi
]
ψ±,k.

Here S denote the Stokes automorphism associated with the change to ω1 from ω2

(cf. [8, 9, 14]). Using Theorem 3.2 and the discussion given in [14, 17], we have the
following theorem:

Theorem 3.3. When (α, β, γ) moves ω1 to ω2 and Im(β − γ) is negative, the Stokes
automorphisms Sψ±,k on the WKB solutions ψ±,k (k = 0, 1):

Sψ±,0 = (1 + exp(2πi(γ − β)η))−
1
2ψ±,0 (3.7)

for x in RI
ω1

and RI
ω2
, and

Sψ±,1 = (1 + exp(2πi(γ − β)η))−
1
2ψ±,1 (3.8)

for x in RII
ω1

and RII
ω2
.
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Proof. We obtain

4ψ+,k =
∞∑

m=1

4y=−y+,k(x)+2m(β−γ)πiψ+,k

=

∞∑

m=1

B−1[4y=−y+,k(x)+2m(β−γ)πiψ+,k,B ]

=

∞∑

m=1

(−1)m+1

2m
B−1[ψ+,k,B(x, y − 2m(β − γ)πi)]

=
1

2

∞∑

m=1

(−1)m+1

m
exp (−2m(β − γ)πi)ψ+,k

=
1

2
log(1 + exp (−2(β − γ)πi))ψ+,k,

where B denotes the Borel transform. Then we have

Sψ+,k = (1 + exp (−2(β − γ)πi))
1
2ψ+,k.

Similarly, we can compute Sψ−,k. Hence, we have Theorem 3.3.

By taking the Borel sums of (3.7) and (3.8), we get the parametric Stokes phe-
nomena of the WKB solutions:

Theorem 3.4. (cf. [6, Theorem 4.4], [19, Thorem 6.3]) Between the Borel sums ψI
ω1

and ψI
ω2

of the WKB solution ψ+,1 the following relation holds:

ψI
ω1

= (1 + exp(2πi(γ − β)η))
1
2ψI

ω2
.

Between the Borel sums ψII
ω1

and ψII
ω2

of the WKB solution ψ+,1 the following relation
holds:

ψII
ω1

= (1 + exp(2πi(γ − β)η))
1
2ψII

ω2
.

Hence, we can give the another proof of the parametric Stokes phenomena from
the viewpoint of alien calculus.

3.1.2. Analysis on the boundary between ω1 and ω3

We consider the case where (α, β, γ) is contained within the boundary ω1 and ω3, i.e.,
Re(γ − α) = 0. Similarly, we can describe parametric Stokes phenomena in terms of
alien derivatives 4ψ±,0 and 4ψ±,1. We assume that Im(α − γ) is positive. In this
case, we consider the case where (α, β, γ) = (1 + ε̂i, 2, 1) ∈ E1. It follows from (i)
of Theorem 2.1 that we can take (α, β, γ) = (1 + ε̂i, 2, 1) without loss of generality.
Let us show an example of Stokes curves of those two cases in Figures 3.4 and 3.6
and a degenerate case, that is, this case is one of the Weber type in Figure 3.5. We
place the cut as shown by the wavy lines in Figure 3.h (h = 4, 6). In this case, we
use the branch of S−1 =

√
Q0 at 1, i.e. we take the branch of S−1 as (2.3). Then ψ−

is dominant (cf. [6] for the computation). Let us denote regions surrounded by the
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Stokes curves as shown in Figures 3.4, 3.5 and 3.6 by RI, RIII, RI
ωh

, RIII
ωh

(h = 1, 3).
The WKB solutions ψ±,0 (resp. ψ±,1) and ψ

(1)
± are Borel summable in RI (resp. RIII)

(cf. [13]).

Fig. 3.4. (α, β, γ)
= (1− ε+ ε̂i, 2, 1) in ω1

Fig. 3.5. (1 + ε̂i, 2, 1) Fig. 3.6. (1+ε+ε̂i, 2, 1) in ω3

0 1 0 1 0 1
a1 a1 a1

a0
a0 a0

RIII
ω1

RIII RIII
ω3

RI
ω1

RI RI
ω3

We denote the Borel transform of ψ(1)
+ by ψ(1),I

+,B and ψ(1),III
+,B . The Borel transform

ψ
(1),I
+,B (resp. ψ(1),III

+,B ) is free from singularities on (3.1). Moreover, the Borel transform
V1,B(α, β, γ; y) is holomorphic at y = 0 and it has simple poles at y = 2m(γ − α)πi

for every non-zero integer m ∈ Z − {0}. Therefore, the Borel transform ψ
(1),I
+,B (resp.

ψ
(1),III
+,B ) has singularities at

y = −y+,k(x) + 2m(γ − α)πi

when Re(γ − α) = 0 (m ∈ Z). The following description of the alien derivative is due
to [17]: We consider the alien derivatives4ψ+,0 and4ψ+,1. Since the Borel transform
V1,B of V1 is a single-valued analytic function with the simple pole at y = 2m(γ−α)πi,
we obtain

4y=2m(γ−α)πi(−V1) =
(−1)m+1

2m
.

Hence, the chain rule in alien calculus leads to

4y=2m(γ−α)πi(exp(−V1)) =
(−1)m+1

2m
exp(−V1). (3.9)

Since the Borel transform ψ
(1),I
+,B (resp. ψ(1),III

ω3,B
) is free from singularities on (3.1), we

obtain
4
(

exp(−y+,k(x)η)ψ
(1)
+

)
= 0 (3.10)

(k = 0 (resp. 1)). Combining (2.5), (3.9) and (3.10), we have

4y=2m(γ−α)πi (exp(−y+,0(x)η)ψ+,0) =
(−1)m+1

2m
(exp(−y+,0(x)η)ψ+,0)

and

4y=2m(γ−α)πi (exp(−y+,1(x)η)ψ+,1) =
(−1)m+1

2m
(exp(−y+,1(x)η)ψ+,1) .
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Similarly, we can compute the alien derivatives 4y=−y−,k(x)+2m(γ−α)πiψ−,k of
ψ−,k(x, η). Then we have the following theorem:

Theorem 3.5. Let ψ±,k(x, η) denote the WKB solutions of (2.1) normalized at the
turning point ak (k = 0, 1). Let us consider the case where (α, β, γ) is contained
within the boundary between ω1 and ω3. The Borel transforms of ψ±,k(x, η) have fixed
singular points at

y = −y±,k(x) + 2m(γ − α)πi, m ∈ Z.

Furthermore, the alien derivatives 4y=−y±,k(x)+2m(γ−α)πiψ±,k of ψ±,k(x, η) (k = 0, 1)
satisfy the following relations:

(4y=−y±,0(x)+2m(γ−α)πiψ±,0)B(x, y) = ± (−1)m+1

2m
ψ±,0,B(x, y−2m(γ−α)πi) (3.11)

for x in RI and

(4y=−y±,1(x)+2m(γ−α)πiψ+,1)B(x, y) = ± (−1)m+1

2m
ψ±,1,B(x, y−2m(γ−α)πi) (3.12)

for x in RIII.

Next we study the actions of Stokes automorphisms on the WKB solutions. The
WKB solutions ψ±,0 (resp. ψ±,1) are Borel summable in RI

ω1
and RI

ω3
(resp. RIII

ω1
and

RIII
ω3
) (cf. [12] and [13] for the notation and terminologies). In this case, the Stokes

automorphism on the WKB solutions is defined by

Sψ±,k = exp
[ ∞∑

m=1

4y=−y±,k(x)+2m(γ−α)πi
]
ψ±,k,

where S denote the Stokes automorphism associated with the change to ω1 from ω3

(cf. [8,9,14]). We use Theorem 3.5 and the discussion given in [14,17]. Then we have
the following theorem:

Theorem 3.6. When (α, β, γ) moves ω1 to ω3 and Im(α− γ) is positive, the Stokes
automorphisms Sψ±,k on the WKB solutions ψ±,k(k = 0, 1):

Sψ±,0 = (1 + exp(2πi(α− γ)η))
1
2ψ±,0 (3.13)

for x in RI
ω1

and RI
ω3
, and

Sψ±,1 = (1 + exp(2πi(α− γ)η))
1
2ψ±,1 (3.14)

for x in RIII
ω1

and RIII
ω3
.

Similarly, by taking the Borel sum of (3.13) and (3.14), we can get the parametric
Stokes phenomena of the WKB solutions. Then we can give another proof of the
parametric Stokes phenomena from view point of alien calculus.
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3.1.3. Analysis on the boundary between ω1 and ω4

We consider the case where (α, β, γ) belong to the boundary between ω1and ω4, i.e.,
Reα = 0. We assume that Imα is negative. In this case, we discuss the case where
(α, β, γ) = (−ε̂i, 2, 1) ∈ E1. It follows from (i) of Theorem 2.1 that we can take
(α, β, γ) = (−ε̂i, 2, 1) without loss of generality. Let us show an example of Stokes
curves of those two cases in Figures 3.7 and 3.9 and a degenerate case, namely, one
of the Weber type in Figure 3.8. We place the cut as shown by the wavy lines in
Figure 3.h (h = 7, 9). We use the branch of S−1 =

√
Q0 at ∞, i.e. we take the

branch of S−1 as (2.4). Then ψ+ is dominant (cf. [6] for the computation). We denote
regions surrounded by the Stokes curves as shown in Figures 3.7, 3.8 and 3.9 by RII,
RIII, RII

ωh
, RIII

ωh
(h = 1, 4). The WKB solutions ψ±,0 (resp. ψ±,1) and ψ

(2)
± are Borel

summable in RII (resp. RIII (cf. [13]).

Fig. 3.7. (α, β, γ)
= (ε− ε̂i, 2, 1) in ω1

Fig. 3.8. (−ε̂i, 2, 1) Fig. 3.9. (−ε− ε̂i, 2, 1) in ω4

0 1
0 1

0 1a0 a0
a0

a1

a1
a1

RIII
ω1

RIII
ω3

RI
ω1

RI
ω3

We denote the Borel transform of ψ(2)
+ by ψ(2),II

+,B and ψ(2),III.
+,B The Borel transform

ψ
(2),II
+,B (resp. ψ(2),III

+,B ) is free from singularities on (3.1). Moreover, the Borel transform
V2,B(α, β, γ; y) is holomorphic at y = 0 and it has simple poles at y = 2mαπi for every
non-zero integer m ∈ Z−{0}. Therefore, the Borel transform ψ

(2),II
+,B (resp. ψ(2),III

+,B ) of
ψ+,k has singularities at

y = −y+,k(x) + 2mαπi

when Reα = 0 (m ∈ Z). The following description of the alien derivative is due to
[17]: We consider the alien derivatives 4ψ+,0 and 4ψ+,1 in the case where (α, β, γ)
moves from ω1 to ω4. Since the Borel transform V2,B of V2 is a single-valued analytic
function with simple pole at y = 2mαπi, we obtain

4y=2mαπi(−V2) =
(−1)m

2m
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(cf. [17]). Hence, the chain rule in alien calculus leads to

4y=2mαπi(exp(−V2)) =
(−1)m

2m
exp(−V2). (3.15)

Since the Borel transforms ψ(2),II
ω1,B

and ψ(2),III
ω1,B

(resp. ψ(2),II
ω4,B

and ψ(2),III
ω4,B

) are free from
singularities on (3.1), we have

4
(

exp(−y+,k(x)η)ψ
(2)
+

)
= 0 (3.16)

(k = 0 (resp. 1)). Combining (2.5), (3.15) and (3.16), we have

4y=2mαπi (exp(−y+,0(x)η)ψ+,0) =
(−1)m

2m
(exp(−y+,0(x)η)ψ+,0)

and
4y=2mαπi (exp(−y+,1(x)η)ψ±,1) =

(−1)m

2m
(exp(−y+,1(x)η)ψ+,1) .

In a similar way, we can compute the alien derivative 4y=−y−,k(x)+2mαπiψ−,k of
ψ−,k(x, η). Then we have the following theorem:

Theorem 3.7. Let ψ±,k(x, η) denote the WKB solutions of (2.1) normalized at the
turning point ak (k = 0, 1). Let us consider the case where (α, β, γ) is contained within
the boundary between ω1 and ω4. The Borel transforms of ψ±,k(x, η) have the fixed
singular points at

y = −y±,k(x) + 2mαπi, m ∈ Z.
Furthermore, the alien derivatives 4y=−y±,k(x)+2mαπiψ±,k of ψ±,k(x, η) (k = 0, 1)
satisfy the following relations:

(4y=−y±,0(x)+2mαπiψ±,0)B(x, y) = ± (−1)m

2m
ψ±,0,B(x, y − 2mαπi) (3.17)

for x in RII and

(4y=−y±,1(x)+2mαπiψ±,1)B(x, y) = ± (−1)m

2m
ψ±,1,B(x, y − 2mαπi) (3.18)

for x in RIII.

Next we discuss the actions of Stokes automorphisms on the WKB solutions. The
WKB solutions ψ±,0 (resp. ψ±,1) are Borel summable in RII

ω1
and RII

ω4
(resp. RIII

ω1
and

RIII
ω4
) (cf. [12] and [13] for the notation and terminologies). In this case, the Stokes

automorphism on the WKB solutions is defined by

Sψ±,k = exp
[ ∞∑

m=1

4y=−y±,k(x)+2m(γ−α)πi
]
ψ+,k,

where S denote the Stokes automorphism associated with the change to ω1 from ω4

(cf. [8, 9, 14]). Using Theorem 3.5 and the discussion given in [14, 17], we have the
following theorem.
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Theorem 3.8. When (α, β, γ) moves ω1 to ω4 and Imα is negative, the Stokes au-
tomorphisms Sψ±,k on the WKB solutions ψ±,k (k = 0, 1):

Sψ±,0 = (1 + exp(−2πiαη))
1
2ψ±,0 (3.19)

for x in RII
ω1

and RII
ω4
, and

Sψ±,1 = (1 + exp(−2πiαη))
1
2ψ±,1 (3.20)

for x in RIII
ω1

and RIII
ω4
.

Similarly, by taking the Borel sum of (3.19) and (3.20), we can get the parametric
Stokes phenomena of the WKB solutions. Then we can give another proof of the
parametric Stokes phenomena from the view point of alien calculus.

Next we discuss alien derivatives when (α, β, γ) belongs to E1 and Stokes auto-
morphisms between ω1m and ωhm(h = 2, 3, 4;m = 0, . . . , 6). Since the potential Q is
invariant under involution ιm, the Stokes geometry for (α, β, γ) ∈ ιhm is the same as
that for (α, β, γ) ∈ ιh. Applying ιm to the relations (3.5), (3.6), (3.11), (3.12), (3.17)
and (3.18), we have the formulas of the alien derivatives. Similarly, we give the Stokes
automorphisms between ω1m and ωhm.

3.2. ANALYSIS OF STOKES CURVES OF LOOP TYPE

We give the computations of the alien derivatives for a loop-type. In [1] and [11],
they will give a concrete form of the alien derivative of the WKB solutions of the
general linear second-order differential equation with a large parameter. In this pa-
per, we consider the alien derivatives of the WKB solutions for the Gauss hyperge-
ometrc differential equations of the loop-type. We consider the case where (α, β, γ)is
contained within the boundary between ω4 and ω41, i.e., Re(α+ β − γ) = 0. We
assume that Im(α+ β − γ) is positive. In this case, we consider the case where
(α, β, γ) = (−0.5, 1.5 + ε̂i, 1) ∈ E2. If Re(α+ β − γ) = 0, the Stokes geometry has
a Stokes which is a loop around 1. Hence, we can take (α, β, γ) = (−0.5, 1.5 + ε̂i, 1)
without loss of generality. Let us show an example of Stokes curves of a derivative
case, namely, the loop-type in Figure 3.10.

Fig. 3.10. (α, β, γ) = (−0.5, 1.5 + ε̂i, 1)

0 1

a0 a1
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In this case, a Stokes curve forms a closed curve with 1 in Figure 3.10. We place
the cut as shown by the wavy lines in Figure 3.10. We use the branch of S−1 =

√
Q0

at 1, i.e. we take the branch of S−1 as (2.3). Hence ψ− is dominant (cf. [6] for the
computation). We denote a region surrounded by the Stokes curve which forms a
closed curve with 0 by RIV. The WKB solutions ψ±,1 and ψ(1)

± are Borel summable
in RIV (cf. [1,11,13]). We denote the Borel transforms of ψ+,1 and ψ(1)

+ by ψIV
+,B and

ψ
(1),IV
+,B , respectively.

The Borel transform ψ
(1),IV
+,B is free from singularities on (3.1) (cf. [13]) Moreover,

the Borel transform V1,B(α, β, γ; y) is holomorphic at y = 0 and it has simple poles
at y = 2m(α+ β − γ)πi for every non-zero integer m ∈ Z− {0}. Therefore, the Borel
transforms of ψ+,k has singularities at

y = −y+,k(x) + 2m(α+ β − γ)πi

when Re(α + β − γ) = 0 (m ∈ Z). The following description of the alien derivative
of the loop-type is due to [1]. Since the Borel transform V1,B of V1 is a single-valued
analytic function with the simple pole at y = 2m(α+ β − γ)πi, we have

4y=2m(α+β−γ)πi(−V1) =
1

m

(cf. [17]). Hence, the chain rule in the alien calculus leads to

4y=2m(α+β−γ)πi(exp(−V1)) =
1

m
exp(−V1). (3.21)

For the Borel transform ψ
(1),IV
+,B is free from singularities on (3.1), we have

4
(

exp(−y+,1(x)η)ψ
(1)
+

)
= 0. (3.22)

Combining (2.5), (3.21) and (3.22), we have

4y=2m(α+β−γ)πi (exp(−y+,0(x)η)ψ+,0) =
1

m
(exp(−y+,0(x)η)ψ+,0) . (3.23)

Similarly, we can compute the alien derivative 4y=−y−,1(x)+2m(α+β−γ)πiψ−,k of
ψ−,k(x, η). Then we have the following theorem:

Theorem 3.9. Let ψ±,1(x, η) denote the WKB solutions of (2.1) normalized at the
turning point a1. Let us consider the case where (α, β, γ) is contained within the
boundary between ω4 and ω41. The Borel transforms of ψ±,1(x, η) have fixed singular
points at

y = −y±,1(x) + 2m(α+ β − γ)πi, m ∈ Z.
Furthermore, the alien derivatives 4y=−y±,1(x)+2m(α+β−γ)πiψ±,1 of ψ±,1(x, η) satisfy
the following relations:

(4y=−y±,1(x)+2m(α+β−γ)πiψ±,1)B(x, y) = ± 1

m
ψ±,1,B(x, y − 2m(α+ β − γ)πi)

for x in RIV.
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Using the alien derivatives on the WKB solutions, we compute the action of a
Stokes automorphisms on the WKB solutions ψ± of the loop-type. We discuss the
case where (α, β, γ) moves ω4 to ω41. We show examples which are enlarged near the
singular point 1 of Stokes curves of those two cases in Figures 3.11 and 3.12. Let us
denote regions surrounded by the Stokes curves as shown in Figures 3.11 and 3.12 by
RIV
ω4

and RIV
ω41

, respectively.

Fig. 3.11. (α, β, γ)=(−0.4+ε, 1.5+ε̂i, 1)∈ω4 Fig. 3.12. (−0.6− ε, 1.5 + ε̂i, 1) ∈ ω41

RIV
ω4

RIV
ω41

a1

a1

By the definition of the alien derivatives 4ψ±,1, we have

Sψ±,1 = exp
[ ∞∑

m=1

4y=−y±,1(x)+2m(α+β−γ)πi
]
ψ±,k.

Here S denote Stokes automorphism associated with the change to ω4 from ω41

(cf. [8, 9, 14]).

Theorem 3.10. When (α, β, γ) moves ω4 to ω41 and Im(α + β − γ) is positive, the
Stokes automorphisms Sψ±,1 of the WKB solutions ψ±,1:

Sψ±,1 = (1 + exp (−2(α+ β − γ)πi))ψ±,1. (3.24)

Proof. By the definition of the alien derivatives and the Stokes automorphism, we
have

4ψ+,1 =

∞∑

m=1

4y=−y+,1(x)+2m(α+β−γ)πiψ+,1

=
∞∑

m=1

B−1[4y=−y+,1(x)+2m(α+β−γ)πiψ+,1,B ]

=
∞∑

m=1

1

m
B−1[ψ+,1,B(x, y − 2m(α+ β − γ)πi)]
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=

∞∑

m=1

1

m
exp (−2m(α+ β − γ)πi)ψ+,1

= log(1− exp (−2(α+ β − γ)πi))ψ+,1.

Similarly, we can compute 4ψ−,1. Hence, we have (3.24).

Finally, we discuss alien derivatives and Stokes automorphisms when (α, βγ) be-
longs to E2 and moves from ωh to ωhm(h = 1, 2, 3, 4;m = 0, 1, . . . , 6), respectively. If
(α, βγ) is contained Reγ = 0 (resp. Re(α − β) = 0), a Stokes geometry has a loop
around 0 (resp. ∞). We can compute them in a similar manner as the computation
of Theorem 3.9 and 3.10 and we have the following theorems:

Theorem 3.11. Let ψ±,0(x, η) denote the WKB solutions of (2.1) normalized at the
turning point ak(k = 0, 1). Let us consider the case where (α, β, γ) is contained within
the boundary between ωm and ωhm (h = 1, 2, 3, 4;m = 0, 1, . . . , 6) and Reγ = 0. The
Borel transforms of ψ±,0(x, η) have the fixed singular points at

y = −y±,k(x) + 2mγπi, m ∈ Z.

Furthermore, the alien derivatives 4y=−y±,k(x)+2mγπiψ±,k of ψ±,k(x, η) satisfy the
following relations:

(4y=−y±,k(x)+2mγπiψ±,k)B(x, y) = ± 1

m
ψ±,k,B(x, y − 2mγπi)

for x inside of the loop. Let us consider the case where (α, β, γ) is contained within
the boundary between ωm and ωhm (h = 1, 2, 3, 4;m = 0, 1, . . . , 6) and Re(β−α) = 0.
The Borel transforms of ψ±,k(x, η) have fixed singular points at

y = −y±,k(x) + 2m(β − α)πi, m ∈ Z.

Furthermore, the alien derivatives 4y=−y±,k(x)+2m(β−α)πiψ±,k of ψ±,k(x, η) satisfy
the following relations:

(4y=−y±,k(x)+2m(β−α)πiψ±,k)B(x, y) = ∓ 1

m
ψ±,k,B(x, y − 2mγπi)

for x inside of the loop.

Theorem 3.12. When (α, β, γ) moves ωh to ωhm(h = 1, 2, 3, 4;m = 0, 1, . . . , 6) and
Reγ = 0, the Stokes automorphisms Sψ±,k of the WKB solutions ψ±,k:

Sψ±,k = (1 + exp (−2γπi))ψ±,k.

When (α, β, γ) moves ωh to ωhm(h = 1, 2, 3, 4;m = 0, 1, . . . , 6) and Re(β − α) = 0,
the Stokes automorphisms Sψ±,k of the WKB solutions ψ±,k:

Sψ±,k = −(1 + exp (−2(β − α)πi))ψ±,k.
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