PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Palaeobiogeography, palaeoecology, and sequence stratigraphy of the Upper Jurassic carbonate succession of the Lar Formation, central Alborz Zone, Iran

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Foraminifera, ammonites, and calcareous dinoflagellates were used for stratigraphy and, together with microfacies, for the assessment of the palaeoenvironmental conditions of the Upper Jurassic deposits in the central Alborz Zone of northern Iran. The Lar Formation (Lar Fm.) in the Polur section is of latest Oxfordian to early Kimmeridgian age. The ammonite Subnebrodites planula and the calcareous dinoflagellate Colomisphaera nagyi have been introduced as new biomarkers of the lower Kimmeridgian in the central Neo-Tethys. The distribution of calcareous dinoflagellates reflects possible dispersal routes along a narrow seaway between the western Neo-Tethys and the Alborz Zone in the central Neo-Tethys. The Terebella-Crescentiella associations of the Lar Fm. represent a low-energy setting under dysoxic conditions in the Central Neo-Tethys Ocean. The benthic foraminiferal assemblages in this formation show a high dominance of infaunal taxa and r-selected strategists. This assemblage is reminiscent of eutrophic conditions and low oxygen levels in the lower part of the Lar Fm. Good preservation of the hexactinellid sponges in the upper part of the Lar Fm. also indicates an oxygen-minimum zone. Three third-order depositional sequences can be distinguished in the study area based on six microfacies. Depositional sequence 1 (DS1) is composed mainly of argillaceous limestone and medium- to thick-bedded limestone, corresponding to an outer ramp-to-middle ramp environment. Depositional sequence 2 (DS2) comprises breccia limestone and thick-bedded limestone facies in its lower part and thin-bedded limestone to massive limestone in its upper part. The breccia limestone facies may be associated with subaerial exposure and reworking of previously deposited sediment during a relative sea level fall. The thin-bedded limestone to massive limestone of DS2 consists mainly of bioclastic mudstone to wackestone (outer ramp). These represent an deep-water outer homoclinal ramp facies. Depositional sequence 3 (DS3) consists mainly of massive limestone to thick-bedded limestone with a bioclastic peloidal microbial Crescentiella packstone (middle ramp). The relative stratigraphic positions of DSs1–3 and sequence boundaries in the uppermost Oxfordian to lower Kimmeridgian of the Polur area show a fair match to the upper Oxfordian to lower Kimmeridgian sequences (JOx7, JOx8, JKi1 and JKi2) on the global sea level curve.
Rocznik
Strony
art. no. 15
Opis fizyczny
Bibliogr. 66 poz., fot., wykr.
Twórcy
autor
  • Kharazmi University, Department of Geology, Faculty of Earth Science, Tehran, Iran
  • Comenius University, Department of Geology and Paleontology, Faculty of Natural Sciences, Ilkovièova 6, 84215 Bratislava, Slovakia
Bibliografia
  • 1. Aghaei, A., Mahboubi, A., Mousavi-Harami, R., Heubeck, C., Nadjafi, M., 2012. Facies analysis and sequence stratigraphy of an Upper Jurassic carbonate ramp in the Eastern Alborz range and Binalud Mountains, NE Iran. Facies, 58: 1-27. https://doi.org/10.1007/s10347-012-0339-8
  • 2. Aghanabati, A., 2004. Geology of Iran. Geological Survey of Iran, Tehran.
  • 3. Aghanabati, A., Rezaie, A., 2009. Stratigraphic Chart of Iran. Geological Survey of Iran, Tehran.
  • 4. Allen, M.B., Ghassemi, M.R., Shahrabi, M., Qorashi, M., 2003. Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran. Journal of Structural Geology, 25: 659-672. https://doi.org/10.1016/S0191-8141(02)00064-0
  • 5. Assereto, R., 1966. Geological Map of Upper Djadjerud and Lar Valleys (Central Alborz, Iran) with explanatory Notes. Istituto di Geologia, Universita di Milano Serie G, pubblicazione.
  • 6. Atrops, F., Benest, M., 1984. Découverte de faunes d'Ammonites de la zone a Platynota (Kimméridgien inférieur) dans les Monts de Chellala (avant-pays Tellien, Algérie); Conséquences stratigraphiques et paléogéographiques. Geobios, 15: 951-1057. https://doi.org/10.1016/S0016-6995(82)80041-7
  • 7. Bádenas, B., Aurell, M., 2001. Kimmeridgian paleogeography and basin evolution of north eastern Iberia. Palaeogeography, Palaeoclimatology, Palaeoecology, 168: 291-310. https://doi.org/10.1016/S0031-0182(01)00204-8.
  • 8. Bakhmutov, V.G., Halásová, E., Ivanova, D.K., Józsa, Š., Reháková, D., Wimbledon, W.A.P., 2018. Biostratigraphy and magnetostratigraphy of the uppermost Tithonian-Lower Berriasian in the Theodosia area of Crimea (southern Ukraine). Geological Quarterly, 62 (2): 197-236. https://doi.org/10.7306/gq.1404
  • 9. Barrier, E., Vrielynck, B., 2008. Palaeotectonic maps of the Middle East, in tectonosedimentary-palinspastic maps from Late Norian to Piacenzian. Commission for the Geological Map of the World/UNESCO.
  • 10. Benito, M.I., Lohmann, C.K., Mas, R., 2005. Late Jurassic paleogeography and paleoclimate in the northern Iberian Basin of Spain: constraints from diagenetic records in reefal and continental carbonates. Journal of Sedimentary Research, 75: 82-96. https://doi.org/10.2110/jsr.2005.008
  • 11. Bochud, M., 2011. Tectonics of the Eastern Greater Caucasus in Azerbaijan. Ph.D. Thesis, University of Fribourg, Fribourg, Switzerland.
  • 12. Brachert, T., 1991. Environmental control on fossilization and siliceous sponge assemblages : ř proposal. In: Fossil and Recent Sponges (eds. J. Reitner and H. Keupp): 543-553. Berlin (Springer). https://doi.org/10.1007/978-3-642-75656-6_45
  • 13. Bradshaw, B., Nelson, C., 2004. Anatomy and origin of autochthonous late Pleistocene forced regression deposits, east Coromandel inner shelf, New Zealand: implications for the development and definition of the regressive systems tract. New Zealand. Journal of Geology and Geophysics, 47: 81-99. https://doi.org/10.1080/00288306.2004.9515039
  • 14. Burchette, T.P., Wright, V.P., 1992. Carbonate ramp depositional systems. Sedimentary Geology, 10: 3-57. https://doi.org/10.1016/0037-0738(92)90003-A
  • 15. Catuneanu, O., Galloway, W.E., Kendall, C.G.St.C., Miall, A.D., Posamentier, H.W., Strasser, A., Tucker, M.E., 2011. Sequence stratigraphy: methodology and nomenclature. Newsletters on Stratigraphy, 44: 173-245. http://dx.doi.org/10.1127/0078-0421/2011/0011
  • 16. Cetean, C.G., Bale, R., Kaminski, M.A., Filipescu, S., 2011. Integrated biostratigraphy and palaeoenvironments of an upper Santonian - upper Campanian succession from the southern part of the Eastern Carpathians, Romania. Cretaceous Research, 32: 575-590. https://doi.org/10.1016/i.cretres.2010.11.001
  • 17. Conway, K.W., Whitney, F., Leys, S.P., Barrie, J.V., Krautter, M., 2017. Sponge reefs of the British Columbia, Canada Coast: impacts of climate change and ocean acidification. In: Climate Change, Ocean Acidification and Sponges (eds. J. Carballo and J. Bell): 429-445. Springer International Publishing AG. https://doi.org/10.1007/978-3-319-59008-0 10
  • 18. Daneshian, J., Saleh, Z., 2020. Marine faunal microfossils from Late Jurassic to Late Cretaceous of the Central Neo-Tethys: A case study from the central Alborz, Iran. Marine Micropaleontology, 156: 101856. https://doi.org/10.1016/j.marmicro.2020.101856
  • 19. Daneshian, J., Saleh, Z., Swennen, R., Mosaddegh, H., 2021. Porosity development in central Alborz Upper Jurassic deposits (N-Iran): sequence stratigraphy, diagenesis and mechanical Stratigraphy. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 300: 117-143. 10.1127/njgpa/2021/0975
  • 20. Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. AAPG Memoirs, 1: 108-121. https://doi.org/10.1306/M1357
  • 21. Embry, A.F., Klovan, J.E., 1971. A Late Devonian reef tract on northeastern Banks Island N.W.T. Bulletin of Canadian Petroleum Geology, 19: 730-781. https://doi.org/10.35767/gscpgbull.19.4.730
  • 22. Fathi, S., Mosaddegh, H., 2012. The study of diagenetic effects on Jurassic dolomitic limestone host rocks in Ahvano Pb-Zn deposits, North Damghan, Iran. Petrology Journal of the University of Isfahan, 2: 85-98.
  • 23. Flügel, E., 2010. Microfacies of Carbonate Rocks. Springer, Berlin. https://doi.org/10.1007/978-3-642-03796-2
  • 24. Gerdes, K.D., Winefield, K.D.P., Simmons, M.D., Van Ooster- hout, C., 2010. The influence of basin architecture and eustacy on the evo lution of Tethyan Mesozoic and Cenozoic carbonate sequences. Geological Society Special Publications, 329: 9-41. https://doi.org/10.1144/SP329.2
  • 25. Golestaneh, A., 1965. A micropaleontological study of the Upper Jurassic and Lower Cretaceous of southern Iran. Ph.D. Thesis, University of London.
  • 26. Gradstein, F., Gale, A., Kopaevich, L., Waskowska, A., Grigelis, A., Glinskikh, L., Gorog, A., 2017. The planktonic foraminifera of the Jurassic. Part II: stratigraphy, palaeoecology and palaeo- biogeography. Swiss Journal of Palaeontology, 136: 259-271. https://doi.org/10.1007/s13358-017-0132-y
  • 27. Haq, B.U., 2018. Juras sic sea-level variations: a re appraisal. GSA Today, 28: 4-10. 10.1130/GSATG359A.1
  • 28. Hunt, D., Tucker, M.E., 1992. Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall. Sedimentary Geology, 81: 1-9. https://doi.Org/10.1016/0037-0738(92)90052-S
  • 29. Hunt, D., Tucker, M.E., 1995. Stranded parasequences and the forced regressive wedge systems tract: deposition during base level fall - reply. Sedimentary Geology, 95: 147-160. https://doi.Org/10.1016/0037-0738(94)00123-C
  • 30. Ivanova, D., Kołodziej, B., Koleva-Rekalovai, E., Roniewicz, E., 2008. Oxfordian to Valanginian palaeoenvironmental evolution on the western Moesian Carbonate Platform: a case study from SW Bulgaria. Annales Societatis Geologorum Poloniae, 78: 65-90.
  • 31. Jones, R.W., Charnock, M.A., 1985. “Morphogroups” of aggluti - nated foraminifera. Their life position and feeding habits and potential applicability in (paleo)ecological studies. Revue de Paléobiologie, 4: 311-320.
  • 32. Kaminski, M.A., Kuhnt, W., 1995. Tubular agglutinated foramini - fera as indicators of organic carbon flux. Grzybowski Foundation Special Publication, 3: 141-144.
  • 33. Kaya, M.Y., Altiner, D., 2014. Terebella lapilloides Munster, 1833 from the Upper Jurassic-Lower Cretaceous Inalti carbonates, northern Turkey: its taxonomic position and paleoenvironmental-paleoecological significance. Turkish Journal of Earth Sciences, 23: 166-183. https://doi.org/10.3906/yer-1306-2
  • 34. Kirmaci, M.Z., 2013. Origin of dolomite in the Late Jurassic platform carbonates, Bolkar Mountains, Central Taurides, Turkey: petrographic and geochemical evidence. Geochemistry, 73: 383-398. https://doi.org/10.1016/j.chemer.2012.11.001
  • 35. Kochhann, K.G.D., Bergue, C.T., Falahatgar, M., Javidan, M., Parent, H., 2015. Benthic foraminifera and ostracoda from the Dalichai Formation (Aalenian-Bajocian) at Telma-Dareh, Alborz Mountain, Northern IRAN. Revista Brasiliera de Paleontologia, 18: 3-20.
  • 36. Kowal-Kasprzyk, J., Krajewski, M., Gedl, P., 2020. The oldest stage of the Outer Carpathian evolution in the light of Oxfordian-Kimmeridgian exotic clast studies (southern Poland). Facies, 66: 2. https://doi.org/10.1007/s10347-020-0595-y
  • 37. Krajewski, M., 2000. Lithology and morphology of Upper Jurassic carbonate buildups in the Będkowska Valley, Kraków region, South - ern Poland. Annales Societatis Geologorum Poloniae, 70:51-163.
  • 38. Kuznetsova, K.I., Grigelis, A., Adjamian, J., Jarmakani, E., Hallaq, L., 1996. Zonal Stratigraphy and Foraminifera of the Tethyan Jurassic (Eastern Mediterranean). Gordon and Breach Science Publishers, Amsterdam.
  • 39. Leinfelder, R.R., Krautter, K., Laternser, R., Nose, M., Schmid, D.U., Schwiegert, G., Werner, W., Keupp, H., Brugger, H., Herrman, R. , Rehfeld-Kiefer, U. , Schroeder, J.H. , Reinhold, C. , Koch , R ., Zeiss , A ., Schweizer, V ., Christmann, H., Menges, G., Luterbacher, H., 1994. The origin of Jurassic reefs: current research and results. Facies, 31: 1-56. https://doi.org/10.1007/BF02536932
  • 40. Leinfelder, R.R., Werner, W., Nose, M., Schmid, D.U., Krautter, M., Laternser, R. , Takacs , M. , Hartmann , D. , 1996 . Paleoecology , growth parameters and dynamics ofcoral, sponge and microbolite reefs from the Late Jurassic. Göttinger Arbeiten zur Geologie und Paläontologie, 2: 227-248.
  • 41. Leinfelder, R.R., 2001. Jurassic reef ecosystems. Topics in Geobiology, 17: 251-309. https://doi.org/10.1007/978-1-4615-1219-6_8
  • 42. Loeblich, A.R., Tappan, H., 1988. Foraminiferal Genera and their Classification: New York, Van Nostrand, 1: 970. https://doi.org/10.1007/978-1-4899-5760-3
  • 43. Majidifard, M.R.,2008. Lithostratigraphy and sedimentary environment of the Dalichai and Larformations (Middle-Upper Jurassic) of NNE Iran. Geoscience, 17: 94-114.
  • 44. Moliner, L., Olóriz, F., 2009. Updated biostratigraphy of Jurassic (lower Kimmeridgian) deposits containing the ammonite Ataxioceras from the eastern Iberian Range, northeastern Spain. GFF, 131: 195-203. https://doi.org/10.1080/11035890902952886
  • 45. Muttoni, G., Gaetani, M., Kent,D.V.,Sciunnach,D., Angiolini, L., Berra, F., Garzanti, E. ,Mattei ,M. ,Zanchi ,A. , 2009 . Opening of the Neo-Tethys Ocean and the Pangea B to Pangea A transformation during the Permian. Geoarabia, 14: 17-46. https://doi.org/10.2113/geoarabia140417
  • 46. Naderi, E., 2002. Microfacies, sedimentary environment and sequences of the Dalichai and Lar Formation. MSc. Thesis, Kharazmi University, Tehran.
  • 47. Nagy, J., Hendrickson, R.M.S., 2022. Hyposaline to hypoxic foraminiferal facies and stratigraphy of Middle Jurassic to basal Cretaceous deposits of the Trřndelag Platform, mid-Norwegian shelf. Palaeogeography, Palaeoclimatology, Palaeoecology, 589: 110831. https://doi.org/10.1016/j.palaeo.2022.110831
  • 48. Ogg, J.G., Ogg, G., Gradstein, F.M., 2016. A Concise Geologic Time Scale. Elsevier, USA. https://doi.org/10.1016/C2009-0-64442-1
  • 49. Reháková, D., 2000a. Evolution and distribution of the Late Jurassic and Early Cretaceous calcareous dinoflagellates recorded in the Western Carpathian pelagic carbonate facies. Mineralia Slovaca, 32: 79-88.
  • 50. Reháková, D., 2000b. Calcareous dinoflagellate and calpinellid bioevents versus sea-level fluctuations recorded in the West-Carpathian (Late Jurassic/Early Cretaceous) pelagic environments. Geologica Carpathica, 51: 229-243.
  • 51. Reháková, D., Matyja, B., Wierzbowski, A., Schlögl, J., Krobicki, M.,Barski,M.,2011. Stratigraphy and microfacies of the Jurassic and lowermost Cretaceous in the Veliky Kamenets section (Pieniny Klippen Belt, Carpathians, Western Ukraine). Volumina Jurassica, 9: 61-104.
  • 52. Reolid,M.,Gaillard,C.h.,Olóriz,F.,Rodríguez-Tovar,F.J.,2005. Microbial encrustations from the Middle Oxfordian-earliest Kimmeridgian lithofacies in the Prebetic Zone (Betic Cordillera, southern Spain): characterization, distribution and controlling factors. Facies 50: 529-543. https://doi.org/10.1007/s10347-004-0030-9
  • 53. Reolid, M., NagyJ., Rodriguez-Tovar, F.J.,2010. Ecostratigraphic trends of Jurassic agglutinated foraminiferal assemblages as a response to sea-level changes in shelf deposits of Svalbard (Norway). Palaeogeography, Palaeoecology, Palaeoclimato- logy, 293: 184-196. https://doi.org/10.1016/j.palaeo.2010.05.019
  • 54. Rousseau, M., Dromart, G., Garcia, J.-P., Atrops, F., Guillocheau, F., 2005. Jurassic evolution of the Arabian carbonate platform edge in central Oman Mountains. Journal of the Geological Society of London, 162: 1-14. https://doi.org/10.1144/0016-764903-178
  • 55. Sarfi, M., Yazdi-Moghadam, M., 2016. Stratigraphy of the Upper Jurassic shallow marine carbonates of the Moghan area (NW Iran), with paleobiogeography implication on Alveosepta jaccardi (Schrodt, 1894). Geopersia, 6: 187-196.
  • 56. Schweigert, G., Kuschel, H., 2017. Comments on the identification ofAmmonites planula Hehl in Zieten, 1830 (Upper Jurassic, SW Germany). Volumina Jurassica, 15: 1-15. https://doi.org/10.5604/01.3001.0010.3920
  • 57. Seyed-Emami, K., Schairer, G., Zeiss, A., 1995. Ammoniten aus der Dalichai-Formation (Mittlerer bis Oberer Jura) und der Lar Formation (Oberer Jura) N Emamzadeh Hashem (Zentralalborz, Nordiran). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie, 35: 39-52.
  • 58. Sharland, P.R., Casey, D.M., Davies , R.B. , Simmons , M.D., Sutcliffe ,O.E .,2004 . Arabian Plate Sequence Stratigraphy revisions to SP2. GeoArabia, 9: 199-214. https://doi.org/10.2113/geoarabia0901199
  • 59. Shahidi, A., Barrier., E., Brunet, M.F., Saidi, A., 2008. Tectonic evolution and Late Triassic-Middle Eocene extension in central Alborz, Iran. Geoscience, 17: 4-25. https://doi.org/10.22071/gsj.2011.54384
  • 60. Smoleń, J., J., 2012. Faunal dynamics of foraminiferal assemblages in the Bathonian (Middle Jurassic) ore-bearing clays at Gnaszyn, Kraków-Silesia Homocline, Poland. Acta Geologica Polonica, 62: 403-419. https://doi.org/10.2478/v10263-012-0023-x
  • 61. Stöcklin, J., 1968. Structural history and tectonics of Iran: a review. AAPGs Bulletin, 52: 1229-1258. https://doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D
  • 62. Strasser, A., Pittet, B., Hillgärtner, H., Pasquier, J.B., 1999. Depositional sequences in shallow carbonate-dominated sedimentary systems: concepts for a high-resolution analysis. Sedimentary Geology, 128: 201-221. https://doi.org/10.1016/S0037-0738(99)00070-6
  • 63. Vahdati-Daneshmand, F., 1997. Geological map of east of Tehran. Scale 1:100 000, no. 6361. Geological Survey of Iran, Tehran.
  • 64. Wilson, J.L., 1975. Carbonate Facies in Geologic History. Springer, New York. https://doi.org/10.1007/978-1-4612-6383-8
  • 65. Wright, V.P., 1992. Arevised classification of limestones. Sedimentary Geology, 76: 177-185. https://doi.org/10.1016/0037-0738(92)90082-3
  • 66. Zanchi, A., Berra, F., Mattei, M., Ghassemi, M., Sabouri, J., 2006. Inversion tectonics in Central Alborz, Iran. Journal of Structural Geology, 28: 2023-2037. https://doi.Org/10.1016/j.jsg.2006.06.020
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f11a2b1e-ad5e-49a1-abf4-29dd19095e50
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.