Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The authors update the issue disassembly-free control and correction of all components of the error of measuring channels with multi-bit analog-to-digital converters (ADCs). The main disadvantages of existing methods for automatic control of the parameters of multi-bit ADCs, in particular their nonlinearity, are identified. Methods for minimizing instrumental errors and errors caused by limited internal resistances of closed switches, input and output resistances of active elements are investigated. The structures of devices for determining the multiplicative and nonlinear components of the error of multi-bit ADCs based on resistive dividers built on single-nominal resistors are proposed and analyzed. The authors propose a method for the correction of additive, multiplicative and nonlinear components of the error at each of the specified points of the conversion range during non-disassembly control of the ADC with both types of inputs. The possibility of non-disassembly control, as well as correction of multiplicative and nonlinear components of the error of multi-bit ADCs in the entire range of conversion during their on-site control is proven. ADC error correction procedures are proposed. These procedures are practically invariant to the non-informative parameters of active structures with resistive dividers composed of single-nominal resistors. In the article the prospects of practical implementation of the method of error correction during non-dismantling control of ADC parameters using the possibilities provided by modern microelectronic components are shown. The ways to minimize errors are proposed and the requirements to the choice of element parameters for the implementation of the proposed technical solutions are given. It is proved that the proposed structure can be used for non-disassembly control of multiplicative and nonlinear components of the error of precision instrumentation amplifiers.
Czasopismo
Rocznik
Tom
Strony
669--684
Opis fizyczny
Bibliogr. 35 poz., rys., wzory
Twórcy
autor
- Lviv Polytecnic National University, Department of Information and Measurement Technologies, S. Bandery 12, 79013 Lviv, Ukraine
autor
- University of Bielsko-Biala, Department of Informatics and Automation, Willowa 2, 43-309 Bielsko-Biała, Poland
- Lviv Polytecnic National University, Department of Specialized Computer Systems, S. Bandery 12, 79013 Lviv, Ukraine
autor
- University of Bielsko-Biala, Department of Informatics and Automation, Willowa 2, 43-309 Bielsko-Biała, Poland
autor
- Lviv Polytecnic National University, Department of Information and Measurement Technologies, S. Bandery 12, 79013 Lviv, Ukraine
autor
- Lviv Polytecnic National University, Department of Information and Measurement Technologies, S. Bandery 12, 79013 Lviv, Ukraine
autor
- Lviv Polytecnic National University, Department of Computerized Automation Systems, S. Bandery 12, 79013 Lviv, Ukraine
Bibliografia
- [1] Piquenmal, F., Jeckelmann, B., Callegaro, L., Hallstrom, J., Janssen, T. J. B. M., Melcher, J., Rietveld, G., Siegner, U., Wright, P., & Zeier, M. (2017). Metrology in electricity and magnetism: EURAMET activities today and tomorrow. Metrologia, 54(5). R1-R24. https://doi.org/10.1088/1681-7575/aa7cae
- [2] Thiel, F. (2018). Digital transformation of legal metrology - The European metrology cloud. OIML Bull, 59(1), 10-21. https://www.oiml.org/en/publications/bulletin/pdf/oiml_bulletin_jan_2018.pdf
- [3] Thiel, F., Esche, M., Toro, F. G., Oppermann, A., Wetzlich, J., & Peters, D. (2017). The European metrology cloud. In 18th International Congress of Metrology (p. 09001). EDP Sciences. https://doi.org/10.1051/metrology/201709001
- [4] Nordholz, J., Dohlus, M., Graflich, J., Kammeyer, A., Nischwitz, M., Wetzlich, J., Yurchenko, A., & Thiel, F. (2021). Evolution of the European Metrology Cloud. OIML Bulletin, 62(3), 25-34. https://www.oiml.org/en/publications/bulletin/pdf/oiml_bulletin_july_2021.pdf
- [5] Toro, F. G., & Lehmann, H. (2021). Brief overview of the future of metrology. Measurement: Sensors, 18, 100306. https://doi.org/10.1016/j.measen.2021.100306
- [6] Stadnyk, B., Mykyychuk, M., Yatsyshyn, S., Fröhlich, T., Mastylo, R., & Yatsuk, V. (2021). Open-science space issue: calibration of measuring channels non-dismantling cyber-physical systems. Measuring Equipment and Metrology, 82(3), 12-17. https://doi.org/10.23939/istcmtm2021.03.012
- [7] Yatsyshyn S., & Stadnyk B. (2017). Cyber-Physical Systems: Metrological Issues (1st ed.). IFSA Publishing.
- [8] Yatsyshyn S., & Stadnyk B. (2021), Cyber-Physical Systems and Metrology 4.0 (1𝑠𝑡 ed.). IFSA Publishing.
- [9] Yatsuk, V., Mykyjchuk, M., & Bubela, T. (2020). Ensuring the measurement efficiency in dispersed measuring systems for energy objects. In Sustainable Production: Novel Trends in Energy, Environment and Material Systems (pp. 131-149). Springer, Cham. https://doi.org/10.1007/978-3-030-11274-5_9
- [10] Jun, S., Kochan, O., Chunzhi, W., & Kochan, R. (2015). Theoretical and experimental research of error of method of thermocouple with controlled profile of temperature field. Measurement Science Review, 15(6), 304. https://doi.org/10.1515/msr-2015-0041
- [11] Jun, S., Kochan, O., & Kochan, R. (2016). Thermocouples with built-in self-testing. International Journal of Thermophysics, 37(4), 1-9. https://doi.org/10.1007/s10765-016-2044-2
- [12] Stadnyk, B., Yatsyshyn, S., & Seheda, O. (2012). Research in Nanothermometry. Part 6. Metrology of Raman Thermometer with universal calibration artifacts, Sensors & Transducers, 142(7), 1-9. https://www.sensorsportal.com/HTML/DIGEST/P_1002.htm
- [13] Kochan, R. (2012). Precyzijni analogo-cyfrovi peretvoruvachi z bezdemontazhnoyu perevirkoyu. Lviv Polytechnica Publishing House (in Ukrainian)
- [14] Kester, W. (2005). The Data Conversion Handbook. Elsevier. https://www.analog.com/en/education/education-library/data-conversion-handbook.html
- [15] Haasz, V. (2003, September). Testing of high-resolution/middle-speed A/D converters and modules problems and ways of their solving. In Second IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, 2003. Proceedings (pp. 7-12). IEEE. https://doi.org/10.1109/IDAACS.2003.1249505
- [16] Eduri, U., & Maloberti, F. (2001, September). On-line digital correction of the harmonic distortion in analog-to-digital converters. In ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No. 01EX483) (Vol. 2, pp. 837-840). IEEE. https://doi.org/10.1109/ICECS.2001.957604
- [17] Björsell, N., & Händel, P. (2007). Achievable ADC performance by postcorrection utilizing dynamic modeling of the integral nonlinearity. EURASIP Journal on Advances in Signal Processing, 2008, 1-10. https://doi.org/10.1155/2008/497187
- [18] Suchanek, P., Slepicka, D., & Haasz, V. (2008). Several approaches to ADC transfer function approximation and their application for ADC non-linearity correction. Metrology and Measurement Systems, 15(4), 501-511.
- [19] Suchanek, P., Haasz, V., & Slepicka, D. (2009, September). ADC nonlinearity correction based on INL(n) approximations. In 2009 IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (pp. 137-140). IEEE. https://doi.org/10.1109/IDAACS.2009.5343008
- [20] Carnì, D. L., & Grimaldi, D. (2007, September). State of Art on the Tests for ΣΔ ADC. In 15th IMECO TC4 Symposium and 12th Workshop on ADC Modelling and Testing. http://www.imeko.org/publications/iwadc-2007/IMEKO-IWADC-2007-F136.pdf
- [21] De Vito, L., Rapuano, S., & Slepieka, D. (2009, May). ADC standard harmonization: Comparison of test methods-Phase II. In 2009 IEEE Instrumentation and Measurement Technology Conference (pp. 1490-1495). IEEE. https://doi.org/10.1109/IMTC.2009.5168691
- [22] Larsson, A., & Sonkusale, S. (2004, September). A background calibration scheme for pipelined ADCs including non-linear operational amplifier gain and reference error correction. In IEEE International SOC Conference, 2004. Proceedings. (pp. 37-40). IEEE. https://doi.org/10.1109/SOCC.2004.1362343
- [23] IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters, in IEEE Std 1241-2010 (Revision of IEEE Std 1241-2000), 1-139. https://doi.org/10.1109/IEEESTD.2011.5692956.
- [24] Di Nisio, A., Giaquinto, N., Fabbiano, L., Cavone, G., & Savino, M. (2008). Improved static testing of A/D converters for DC measurements. IEEE Transactions on Instrumentation and Measurement, 58(2), 356-364. https://doi.org/10.1109/TIM.2008.928878
- [25] Albu, M. M., Ferrero, A., Mihai, F., & Salicone, S. (2005). Remote calibration using mobile, multiagent technology. IEEE Transactions on Instrumentation and Measurement, 54(1), 24-30. https://doi.org/10.1109/TIM.2004.838139
- [26] Berrani, S., Yachir, A., Djemaa, B., & Aissani, M. (2018, October). Extended multi-agent system based service composition in the Internet of things. In 2018 3rd International Conference on Pattern Analysis and Intelligent Systems (PAIS) (pp. 1-8). IEEE. https://doi.org/10.1109/PAIS.2018.8598503
- [27] Peterek, M., & Montavon, B. (2020). Prototype for dual digital traceability of metrology data using X.509 and IOTA. CIRP Annals, 69(1), 449-452. https://doi.org/10.1016/j.cirp.2020.04.104
- [28] Analog Devices, Inc. (2012). AD8237 Micropower, Zero Drift, True Rail-to-Rail Instrumentation Amplifier [Data sheet]. https://www.analog.com/media/en/technical-documentation/data-sheets/AD8237.pdf
- [29] Analog Devices, Inc. (2021). AD4630 24-Bit, 2 MSPS, Dual Channel SAR ADC [Data sheet]. https://www.analog.com/media/en/technical-documentation/data-sheets/ad4630-24.pdf
- [30] Analog Devices, Inc. (2020). AD4682/83 Pseudo Differential Input, 1 MSPS/500 kSPS, Dual, Simultaneous Sampling, 16-Bit, SAR ADCs [Data Sheet]. https://www.analog.com/media/en/technical-documentation/data-sheets/ad4682-ad4683.pdf
- [31] Infineon Technologies AG. (2020). CY8CKIT-059 PSoC® 5LP Prototyping Kit with Onboard Programmer and Debugger [User Manual].
- [32] Analog Devices, Inc. (2019). ADG888 0.4 Ω CMOS, Dual DPDT Switch in WLCSP/LFCSP/TSSOP [Data Sheet, Rev. D]. https://www.analog.com/media/en/technical-documentation/data-sheets/ADG888.pdf
- [33] Analog Devices, Inc. (2021). AD7606C-18 8-Channel DAS with 18-Bit, 1 MSPS Bipolar Input, Simultaneous Sampling ADC [Data Sheet, Rev. A]. https://www.analog.com/media/en/technical-documentation/data-sheets/ad7606c-18.pdf
- [34] Analog Devices, Inc. (2018). ADuM5020/ADuM5028 Low Emission 500 mW Isolated DC-to-DC Converter. [Data Sheet. Rev. A]. https://www.analog.com/media/en/technical-documentation/data-sheets/ADuM5020-5028.pdf
- [35] Vishay foil resistors, Alpha electronic, Powertron. (2020). Ultra High Precision Resistors. https://www.ieee.li/pdf/viewgraphs/ultra_high_precision_resistors.pdf
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f116fe24-ef3c-42e0-9b4f-264cf1a7f323