PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrostatic Hazards Assessment of Nitramine Explosives: Resistivity, Charge Accumulation and Discharge Sensitivity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The electrostatic hazards of nitramine explosives (RDX, HMX) were assessed in this paper. The resistivities of different particle-size RDX and HMX were tested by a device designed and manufactured according to the standard ISO/IEC 80079-20-2:2016. This work shows that the resistivities of uncompacted RDX and HMX increase as the particle size decreases. Charging characteristics test experiments were also carried out using a so-called sieve method. Using this method, the influence of aperture size on charge accumulation of RDX was studied, and the characteristics of electrostatic accumulation of different particle-size RDX and HMX sieved with 50 mesh standard sieve were compared. The results show that the absolute value of the charge accumulation increases as the mesh number increases (i.e. the aperture size decreases), and increases as the particle size is decreased, indicating that nano-sized RDX and nano-sized HMX accumulate static electricity more easily than conventional micron-sized ones. Finally, the electrostatic discharge (ESD) sensitivity of nano-sized RDX and nano-sized HMX was investigated. Nano-sized nitramine explosives were found to have a higher ESD sensitivity than micron-sized ones.
Rocznik
Strony
755--769
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, P.R. China
autor
  • School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
autor
  • School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
autor
  • School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
  • National Special Superfine Powder Engineering Research Center of China, Nanjing 210094, P.R. China
autor
  • School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
Bibliografia
  • [1] Glor M., Ignition Hazard Due to Static Electricity in Particulate Processes, Powder Technol., 2003, 135-136, 223-233.
  • [2] Dahn C.J., Reyes B.N., Kashani A., Finkelshtein J., Electrostatic Hazards of Explosive, Propellant and Pyrotechnic Powders, Electr. Overstress/Electrost. Disch. Symp. Proc., Reno, NV, USA, 1998, 139-150.
  • [3] Liu J., Zhang L., Fei Y., Study on Testing the Quantity of Frictional Static Electricity of RDX, Coal Mine Blasting, 2006, 24, 1-4.
  • [4] Lu M., Zhao S., Chen J., Measurement and Analysis of the Frictional Static Electricity Characteristics of Composite RDX, Chin. J. Energ. Mater., 2008, 16, 708-711.
  • [5] Thorpe D.G.L., Singh S., Cartwright P., Bailey A.G., Electrostatic Hazards in Sugar Dust in Storage Silos, J. Electrost., 1985, 16, 193-207.
  • [6] Dahn C.J., Dastidar A.G., Propagating Brush Discharge Initiation of Dust Layers − A New Test Method, J. Phys. IV France, 2002, 12, 65-69.
  • [7] Glor M., Hazards Due to Electrostatic Charging of Powders, J. Electrost., 1985, 16, 175-191.
  • [8] Chen Z., Wu Y., Hu X., Liu S., Research on ESD Ignition Hazards of Textiles, J. Electrost., 2003, 57, 203-207.
  • [9] Skinner D., Olson D., Block-Bolten A., Electrostatic Discharge Ignition of Energetic Materials, Propellants Explos. Pyrotech., 1998, 23, 34-42.
  • [10] Talawar M.B., Agrawal A.P., Anniyappan M., Wani D.S., Bansode M.K., Gore G.M., Primary Explosives: Electrostatic Discharge Initiation, Additive Effect and its Relation to Thermal and Explosive Characteristics, J. Hazard. Mater., 2006, 137, 1074-1078.
  • [11] Larson T.E., Dimas P., Hannaford C.E., Electrostatic Sensitivity Testing of Explosives at Los Alamos, Proc. 9th (Int.) Symp. Detonation, Portland, OR, USA, 1989, 1076-1083.
  • [12] Keshavarz M.H., Theoretical Prediction of Electric Spark Sensitivity of Nitroaromatic Energetic Compounds Based on Molecular Structure, J. Hazard. Mater., 2008, 153, 201-206.
  • [13] Keshavarz M.H., Reliable Prediction of Electric Spark Sensitivity of Nitramines: A General Correlation with Detonation Pressure, J. Hazard. Mater., 2009, 167, 461-466.
  • [14] Keshavarz M.H., Relationship Between the Electrostatic Sensitivity of Nitramines and their Molecular Structure, Propellants Explos. Pyrotech., 2009, 34, 136-141.
  • [15] Wang G., Xiao H., Ju X., Gong X., Detonation Velocities and Pressures, and their Relationships with Electric Spark Sensitivities of Nitramines, Propellants Explos. Pyrotech., 2006, 31, 102-109.
  • [16] Wang G., Xiao H., Ju X., Gong X., Calculation of Detonation Velocity, Pressure and Electric Spark Sensitivity of Nitro Arenes Based on Quantum Chemistry, Propellants Explos. Pyrotech., 2006, 31, 361-368.
  • [17] Zeman S., A Study of Chemical Micro-mechanism of Initiation of Organic Polynitro Compounds, in: Energetic Materials, (Politzer P., Murray J., Eds.), Elsevier, Amsterdam, 2003, pp. 25-52.
  • [18] Roux M., Auzanneau M., Brass C., Electric Spark and ESD Sensitivity of Reactive Solids. Part I: Experimental Results and Reflection Factors for Sensitivity Test Optimization, Propellants Explos. Pyrotech., 1993, 18, 317-324.
  • [19] Auzenau M., Roux M., Electric Spark and ESD Sensitivity of Reactive Solids, Part II: Energy Transfer Mechanism and Comprehensive Study on E50, Propellants Explos. Pyrotech., 1995, 20, 96-101.
  • [20] Zeman S., Pelikán V., Majzlík J., Kočí J., Electric Spark Sensitivity of Nitramines. Part II: A Problem of “Hot Spots”, Cent. Eur. J. Energ. Mater., 2006, 3, 45-51.
  • [21] Li Z., Zeng D., Zhou Z., Zhou M., Zhang T., Huang H., Zhang J., Yang L., A Comprehensive Study of the Electrostatic Discharge Sensitivity and Chargeability of Tris(carbohydrazide)zinc Perchlorate, Cent. Eur. J. Energ. Mater., 2014, 11, 553-573.
  • [22] Pant A., Nandi A.K., Newale S.P., Gajbhiye V.P., Prasanth H., Pandey R.K., Preparation and Characterization of Ultrafine RDX, Cent. Eur. J. Energ. Mater., 2013, 10, 393-407.
  • [23] Hosoya F., Shiino K., Itabashi K., Electric-spark Sensitivity of Heat-resistant Polynitroaromatic Compounds, Propellants Explos. Pyrotech., 1991, 16, 119-122.
  • [24] Zeman S., Kočí J., Electric Spark Sensitivity of Polynitro Compounds. Part IV: A Relation to Thermal Decomposition Parameters, Chin. J. Energ. Mater., 2000, 8, 18-26.
  • [25] Kočí J., Zeman V., Zeman S., Electric Spark Sensitivity of Polynitro Compounds. Part V: A Relationship between Electric Spark and Impact Sensitivities of Energetic Materials, Chin. J. Energ. Mater., 2001, 9, 60-65.
  • [26] Zohari N., Seyed-Sadjadi S.A., Marashi-Manesh S., The Relationship between Impact Sensitivity of Nitroaromatic Energetic Compounds and their Electrostatic Sensitivity, Cent. Eur. J. Energ. Mater., 2016, 13, 427-443.
  • [27] Zohari N., Keshavarz M.H., Seyedsadjadi S.A., The Advantages and Shortcomings of Using Nano-sized Energetic Materials, Chin. J. Energ. Mater., 2013, 10, 135-147.
  • [28] Liu J., Jiang W., Yang Q., Song J., Hao G., Li F., Study of Nano-nitramine Explosives: Preparation, Sensitivity and Application, Def. Technol., 2014, 10, 184-189.
  • [29] Liu J., Jiang W., Li F., Effect of Drying Conditions on the Particle Size, Dispersion State, and Mechanical Sensitivities of Nano HMX, Propellants Explos. Pyrotech., 2014, 39, 30-39.
  • [30] Liu J., Wang L., Li Q., Preparation and Characterization of Insensitive Nano RDX, Chin. J. Explos. Propellants, 2012, 35, 46-50.
  • [31] Taylor D.M., Measuring Techniques for Electrostatics, J. Electrost., 2001, 51-52, 502-508.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1141629-86ff-4b92-8da1-6dceb4634541
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.