Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
Electron Magnetic Resonance Forum EMR-PL (2; 16-18.05.2013; Częstochowa-Hucisko, Poland )
Języki publikacji
Abstrakty
Interaction of CO, NO, and O2 diatomics with NiII and NiI ions dispersed in ZSM-5 zeolite was investigated by electron paramagnetic resonance (EPR) spectroscopy and density functional theory (DFT) modelling. The resulting adducts NiI-CO, NiII-NO, and NiI-O2 were identified based on g-tensor parameters, obtained by computer fitting of the powder EPR spectra, and next ascertained by parallel relativistic DFT calculations of the corresponding g-tensor values. The structures of the NiI-CO, NiII-NO, and NiI-O2 complexes were obtained by geometry optimization with the Kohn- -Sham method. Binding of the diatomics was discussed in terms of the spin-pairing and electron density transfer events. Interaction of CO with NiI cations led to the pronounced change in the coordination and electronic structure of the NiI center, however, no redox processes were observed in agreement with the “innocent” nature of CO as a ligand. On the contrary, strong electron and spin density redistribution was observed upon NO and O2 interaction (“non-innocent ligands”) leading to the formation of the bound nitrosonium NOδ+ and superoxo O2 – species, respectively.
Czasopismo
Rocznik
Tom
Strony
351--357
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
- Faculty of Chemistry, Jagiellonian University, 3 R. Ingardena Str., 30-060 Kraków, Poland, Tel.: +48 12 663 2224, Fax: +48 12 634 0515
autor
- Faculty of Chemistry, Jagiellonian University, 3 R. Ingardena Str., 30-060 Kraków, Poland, Tel.: +48 12 663 2224, Fax: +48 12 634 0515
autor
- Faculty of Chemistry, Jagiellonian University, 3 R. Ingardena Str., 30-060 Kraków, Poland, Tel.: +48 12 663 2224, Fax: +48 12 634 0515
autor
- Faculty of Chemistry, Jagiellonian University, 3 R. Ingardena Str., 30-060 Kraków, Poland, Tel.: +48 12 663 2224, Fax: +48 12 634 0515
Bibliografia
- 1. Harrop TC, Olmstead MM, Mascharak PK (2006) Synthetic analogues of the active site of the A-cluster of acetyl coenzyme A synthase/CO dehydrogenase: syntheses, structures, and reactions with CO. Inorg Chem 45:3424–3436
- 2. Hoffman BM, Nelson NJ (1969) Structure of nitric oxide adsorbed on 4A molecular sieve. J Chem Phys 50:2598–2603
- 3. http://thch.uni-bonn.de/tc/orca
- 4. Känzig W, Cohen MH (1959) Paramagnetic resonance of oxygen in alkali halides. Phys Rev Lett 3:509–510
- 5. Kubas GJ (2007) Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. Chem Rev107:4152–4205
- 6. Mosqueda-Jiménez BI, Jentys A, Seshan K, Lercher JA (2003) Structure-activity relations for Ni-containing zeolites during NO reduction II. Role of the chemical state of Ni. J Catal 218:375–385
- 7. Neese F (2005) Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations. J Chem Phys 122:034107
- 8. Pietrzyk P, Podolska K, Mazur T, Sojka Z (2011) Heterogeneous binding of dioxygen: EPR and DFT evidence for side-on nickel(II)-superoxo adduct with unprecedented magnetic structure hosted in MFI zeolite. J Am Chem Soc 133:19931–19943
- 9. Pietrzyk P, Podolska K, Sojka Z (2008) DFT analysis of g and 13C hyperfine coupling tensors for model NiI(CO)nLm (n = 1÷4, L = H2O, OH–) complexes epitomizing surface nickel(I) carbonyls. J Phys Chem A 112:12208–12219
- 10. Pietrzyk P, Podolska K, Sojka Z (2009) Resolving conformation dichotomy for Y- and T-shaped three-coordinate NiI carbonyl complexes with relativistic DFT analysis of EPR fingerprints. Chem Eur J 15:11802–11807
- 11. Pietrzyk P, Podolska K, Sojka Z (2011) Role of NOδ+ intermediates in NO reduction with propene over NiZSM-5 zeolite revealed by EPR and IR spectroscopic investigations and DFT modeling. J Phys Chem C 115:13008–13015
- 12. Pietrzyk P, Podolska K, Sojka Z (2012) Molecular interpretation of EPR parameters – computational spectroscopy approaches. Electron Paramag Reson 23:264–311
- 13. Pietrzyk P, Sojka Z (2007) Co2+/Co0 redox couple revealed by EPR spectroscopy triggers preferential coordination of reactants during SCR of NOx with propene over cobalt--exchanged zeolites. Chem Commun 19:1930–1932
- 14. Sadło J, Michalik J, Kevan L (2006) EPR and ESEEM study of silver clusters in ZK-4 molecular sieves. Nukleonika 51;Suppl 1:S49–S54
- 15. Schreckenbach G, Ziegler T (1997) Calculation of the g-tensor of electron paramagnetic resonance spectroscopy using gauge-including atomic orbitals and density functional theory. J Phys Chem A 101:3388–3399
- 16. Sojka Z, Pietrzyk P, Martra G, Kermarec M, Che M (2006) EPR and DFT study of NO interaction with Ni/SiO2 catalyst: insight into mechanistic steps of disproportionation process promoted by tripodal surface nickel complex.Catal Today 114:154–161
- 17. Spalek T, Pietrzyk P, Sojka Z (2005) Application of genetic algorithm joint with Powell method to non-linear least-squares fitting of powder EPR spectra. J Chem Inf Model 45:18–29
- I18. te Velde G, Bickelhaupt FM, Baerends EJ et al. (2001) Chemistry with ADF. J Comput Chem 22:931–967
- 19. Yao S, Driess M (2012) Lessons from isolable nickel(I) precursor complexes for small molecule activation. Acc Chem Res 45:276–287
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1130086-5389-4031-8d81-970064fafd99