Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wpływ ortodontycznych magnesów samoprzylepnych na właściwości mechaniczne i stopień konwersji fotopolimeryzowanego kleju ortodontycznego
Języki publikacji
Abstrakty
The purpose of this study was to calculate the effects of magnetic field (MF) on the degree of conversion (DC%) and mechanical properties of a photopolymerized orthodontic adhesive. In this investigation, Vega Ortho UV orthodontic adhesive was employed. The applied magnetic field had varying intensities (fixed at 0.01 T, 0.03 T, 0.05 T, 0.1 T, 0.15 T, and 0.2 T and a duration of 5 minutes) and a fixed frequency of 50 Hz. Vickers microhardness and DC% were investigated utilizing the specimens, which were created using circular molds and prepared for compression strength (CS) testing in accordance with ISO 4049. To evaluate DC% before and after MF exposure, Fourier-transform infrared spectroscopy (FTIR/ ATR) was performed. A microhardness tester was used to quantify the samples’ initial VHN while subjecting them to a 500 g load for 15 seconds. After that, properties were evaluated. With the aid of scanning electron microscopy (SEM), the surfaces were evaluated. The one-way analysis of difference and Tukey significant difference tests were used to evaluate the data. Analyses of statistical data showed that DC% tends to rise up to 0.05 T. When compared to the control, VHN and compression strength were considerably decreased after 0.03 T MF (p ≤ 0.05). However, there was a significant difference between the VHN and CS as their values increased with increasing magnetic field intensity. The surfaces of the Vega Ortho were deteriorated, as shown by SEM scans. It was found that the effect of the magnetic field caused changes in the physical and chemical properties.
Celem badania było określenie wpływu pola magnetycznego (MF) na stopień konwersji (DC%) i właściwości mechaniczne fotopolimeryzowanego kleju ortodontycznego. W badaniu zastosowano klej ortodontyczny Vega Ortho UV. Zastosowane pole magnetyczne miało różne natężenia (0,01 T, 0,03 T, 0,05 T, 0,1 T, 0,15 T i 0,2 T przez 5 minut) i stałą częstotliwość 50 Hz. Mikrotwardość Vickersa i DC% ustalono z wykorzystaniem próbek, które zostały wykonane przy użyciu okrągłych form i przygotowane do badania wytrzymałości na ściskanie (CS) zgodnie z normą ISO 4049. Do oceny DC% przed ekspozycją na działanie pola magnetycznego i po niej wykorzystano spektroskopię w podczerwieni z transformacją Fouriera (FTIR/ATR). Do ilościowego określenia początkowej wartości VHN próbek użyto mikrotwardościomierza, poddając je obciążeniu 500 g przez 15 sekund. Następnie dokonano oceny właściwości. Ocenę powierzchni przeprowadzono za pomocą skaningowej mikroskopii elektronowej (SEM). Dane poddano jednokierunkowej analizie różnic i testowi istotnej różnicy Tukeya. Analizy danych statystycznych wykazały, że DC% ma tendencję do wzrostu do poziomu 0,05 T. W porównaniu z próbką kontrolną wartości VHN i wytrzymałości na ściskanie uległy znacznemu zmniejszeniu po oddziaływaniu 0,03 T MF (p ≤ 0,05). Istniała jednak znacząca różnica między VHN i CS, ponieważ ich wartości rosły wraz ze wzrostem natężenia pola magnetycznego. Powierzchnie Vega Ortho uległy degradacji, jak wykazały skany SEM. Stwierdzono, że wpływ pola magnetycznego spowodował zmiany właściwości fizykochemicznych.
Wydawca
Czasopismo
Rocznik
Tom
Strony
329--334
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
autor
- Department of Physics, College of Science, University of Mosul, Iraq
autor
- Department of Physics, College of Science, University of Mosul, Iraq
autor
- Department of Orthodontics, College of Dentistry, Mosul University, Iraq
Bibliografia
- [1] J. Stöhr, H. C. Siegmann. 2006. Magnetism: From Fundamentals to Nanoscale Dynamics. Berlin–Heidelberg–NewYork: Springer.
- [2] A. H. Hashish, M. A. El-Missiry, H. I. Abdelkader, R. H. Abou-Saleh. 2008. “Assessment of Biological Changes of Continuous Whole Body Exposure to Static Magnetic Field and Extremely Low Frequency Electromagnetic Fields in Mice.” Ecotoxicology and Environmental Safety 71(3): 895–902. DOI: 10.1016/j.ecoenv.2007.10.002.
- [3] C. Vergallo, L. Dini. 2018. “Comparative Analysis of Biological Effects Induced on Different Cell Types by Magnetic Fields with Magnetic Flux Densities in the Range of 1–60 mT and Frequencies up to 50 Hz.” Sustainability 10(8): 2776. DOI: 10.3390/su10082776.
- [4] M. Yamaguchi, Y. Tanimoto (eds). 2006. Magneto-Science. Magnetic Field Effects on Materials: Fundamentals and Applications. Springer.
- [5] A. P. Chiriac, C. I. Simionescu. 2000. “Magnetic Field Polymerisation.” Progress in Polymer Science 25(2): 219–258. DOI: 10.1016/S0079-6700(99)00037-4.
- [6] T. Kimura. 2003. “Study on the Effect of Magnetic Fields on Polymeric Materials and Its Application.” Polymer Journal 35(11): 823–843. DOI: 10.1295/jw.35.823.
- [7] J. H. Van Vleck. 1965. The Theory of Electric and Magnetic Susceptibilities. Oxford: Oxford University Press.
- [8] A. Weiss, H. Witte.1973. Magnetochemie: Grundlagen und Anwendungen. Weinheim: Verlag Chemie.
- [9] D. Feldman. 2008. “Polymer History.” Designed Monomers and Polymers 11(1): 1–15. DOI: 10.1163/156855508X292383.
- [10] V. E. Gajewski, C. S. Pfeifer, N. R. Fróes-Salgado, L. C. Boaro, R. R. Braga. 2012. “Monomers Used in Resin Composites: Degree of Conversion, Mechanical Properties and Water Sorption/Solubility.” Brazilian Dental Journal 23(5): 508–514. DOI: 10.1590/s0103-64402012000500007.
- [11] E. Asmussen, A. Peutzfeldt. 1998. “Influence of UEDMA, BisGMA and TEGDMA on Selected Mechanical Properties of Experimental Resin Composites.” Dental Materials 14(1): 51–56. DOI: 10.1016/S0109-5641(98)00009-8.
- [12] E. Asmussen. 1982. “Factors Affecting the Quantity of Remaining Double Bonds in Restorative Resin Polymers.” European Journal of Oral Sciences 90(6): 490–496. DOI: 10.1111/j.1600-0722.1982.tb00767.x.
- [13] J. L. Ferracane, E. H. Greener. 1986. “The Effect of Resin Formulation on the Degree of Conversion and Mechanical Properties of Dental Restorative Resins.” Journal of Biomedical Materials Research 20(1): 121–131. DOI: 10.1002/jbm.820200111.
- [14] I. E. Ruyter, H. Øysæd. 1987. “Composites for Use in Posterior Teeth: Composition and Conversion.” Journal of Biomedical Materials Research 21(1): 11–23. DOI: 10.1002/jbm.820210107.
- [15] I. E. Ruyter, S. A. Svendsen. 1978. “Remaining Methacrylate Groups in Composite Restorative Materials.” Acta Odontologica Scandinavica 36(2): 75–82. DOI: 10.3109/00016357809027569.
- [16] E. Asmussen. 1982. “Restorative Resins: Hardness and Strength vs. Quantity of Remaining Double Bonds.” European Journal of Oral Sciences 90(6): 484–489. DOI: 10.1111/j.1600-0722.1982.tb00766.x.
- [17] J. Park, J. Eslick, Q. Ye, A. Misra, P. Spencer. 2011. “The Influence of Chemical Structure on the Properties in Methacrylate-Based Dentin Adhesives.” Dental Materials 27(11): 1086–1093. DOI: 10.1016/j.dental.2011.07.011.
- [18] A. Peutzfeldt, E. Asmussen. 2005. “Resin Composite Properties and Energy Density of Light Cure.” Journal of Dental Research 84(7): 659–662. DOI: 10.1177/154405910508400715.
- [19] H. Imaizumi, N. Nambu, T. Nagai. 1980. “Stability and Several Physical Properties of Amorphous and Crystalline Forms of Indomethacin.” Chemical and Pharmaceutical Bulletin 28(9): 2565–2569. DOI: 10.1248/cpb.28.2565.
- [20] C. Nunes, A. Mahendrasingam, R. Suryanarayanan. 2005. “Quantification of Crystallinity in Substantially Amorphous Materials by Synchrotron X-ray Powder Diffractometry.” Pharmaceutical Research 22: 1942–1953. DOI: 10.1007/s11095-005-7626-9.
- [21] K. M. Rode, P. R. Lloret, M. L. Turbino. 2005. “Study of Microhardness in Depth of Composite Resin Polymerized with Argon Laser and Halogen Light.” Revista da Pós-Graduação 12: 287–292.
- [22] K. H. Chung, E. H. Greener. 1990. “Correlation between Degree of Conversion, Filler Concentration and Mechanical Properties of Posterior Composite Resins.” Journal of Oral Rehabilitation 17(5): 487–494. DOI: 10.1111/J.1365-2842.1990.TB01419.X.
- [23] S. Üşümez, T. Büyükyilmaz, A. İ. Karaman, B. Gündüz. 2005. “Degree of Conversion of Two Lingual Retainer Adhesives Cured with Different Light Sources.” European Journal of Orthodontics 27(2): 173–179. DOI: 10.1093/ejo/cjh085.
- [24] T. H. Yoon, Y. K. Lee, B. S. Lim, C. Kim. 2002. “Degree of Polymerization of Resin Composites by Different Light Sources.” Journal of Oral Rehabilitation 29(12): 1165–1173. DOI: 10.1046/j.1365-2842.2002.00970.x.
- [25] G. Eliades, G. J. Vougiouklakis, A. A. Caputo. 1987. “Degree of Double Bond Conversion in Light-Cured Composites.” Dental Materials 3(1): 19–25. DOI: 10.1016/S0109-5641(87)80055-6.
- [26] I. Barszczewska-Rybarek, S. Jurczyk. 2015. “Comparative Study of Structure- -Property Relationships in Polymer Networks Based on Bis-GMA, TEGDMA and Various Urethane-Dimethacrylates.” Materials 8(3): 1230–1248. DOI: 10.3390/ma8031230.
- [27] S. S. S. Al Qassar, A. A. Taqa, H. K. Mohiaalden. 2021. “Can the Static Magnetic Field Improve Orthodontic Adhesive Polymerization?” Journal of International Dental and Medical Research 14(1): 67–73.
- [28] E. Miękoś, M. Cichomski, M. Zieliński, T. Klepka, D. Sroczyński, A. Fenyk. 2021. “Modification of the Properties of Polymer Composites in a Constant Magnetic Field Environment.” Materials 14(14): 3806. DOI: 10.3390/ma14143806.
- [29] Y. Wang, Z. Xing, Y. Huang, W. Guo, J. Kang, H. Wang, Z. Zhang. 2021. “Effect of Pulse Magnetic Field Treatment on the Hardness of 20Cr2Ni4A steel.” Journal of Magnetism and Magnetic Materials 538: 168248. DOI: 10.1016/j.jmmm.2021.168248.
- [30] M. R. Tonetto, S. C. S. Pinto, A. Rastelli, A. Borges, J. R. Saad, F. Pedro, M. D. de Andrade, M. Bandéca. 2013. “Degree of Conversion of Polymer-Matrix Composite Assessed by FTIR Analysis.” Journal of Contemporary Dental Practice 14(1): 76–79. DOI: 10.5005/jp-journals-10024-1274.
- [31] J. P. Sandler. 1991. “An Attractive Solution to Unerupted Teeth.” American Journal of Orthodontics and Dentofacial Orthopedics 100(6): 489–493. DOI: 10.1016/0889-5406(91)70089-F.
- [32] International Commission on Non-Ionizing Radiation Protection. 2013. “ICNIRP Guidelines on Limits of Exposure to Laser Radiation of Wavelengths between 180 nm and 1,000 μm.” Health Physics 105(3): 271–295. DOI: 10.1097/HP.0b013e3182983fd4.
- [33] M. A. Papadopulos, I. Hörler, H. Gerber, B. A. Rahn, Th. Rakosi. 1992. “Einfluß statischer magnetischer Felder auf die Aktivität von Osteoblasten: Eine In- -vitro-Untersuchung.” Fortschritte der Kieferorthopädie 53(4): 218–222. DOI: 10.1007/BF02327638.
- [34] E. Calabrò, S. Magazù. 2013. “Demicellization of Polyethylene Oxide in Water Solution under Static Magnetic Field Exposure Studied by FTIR Spectroscopy.” Advances in Physical Chemistry: 485865. DOI: 10.1155/2013/485865.
- [35] P. C. M. Christianen, I. O. Shklyarevskiy, M. I. Boamfa, J. C. Maan. 2004. “Alignment of Molecular Materials in High Magnetic Fields.” Physica B: Condensed Matter 346–347: 255–261. DOI: 10.1016/j.physb.2004.01.061.
- [36] Y. P. Rodin. 1991. “Static Magnetic Fields and Physical-Mechanical Properties of Polymers: A Review.” Mechanics of Composite Materials 27(3): 331–341. DOI: 10.1007/BF00616883.
- [37] M. Yamato, T. Kimura. 2020. “Magnetic Processing of Diamagnetic Materials.” Polymers 12(7): 1491. DOI: 10.3390/polym12071491.
- [38] V. S. Tsepelev, Y. N. Starodubtsev. 2021. “Nanocrystalline Soft Magnetic Iron-Based Materials from Liquid State to Ready Product.” Nanomaterials 11(1): 108. DOI: 10.3390/nano11010108.
- [39] U. E. Steiner, T. Ulrich. 1989. “Magnetic Field Effects in Chemical Kinetics and Related Phenomena.” Chemical Reviews 89(1): 51–147. DOI: 10.1021/ cr00091a003.
- [40] N. J. Turro, B. Kraeutler. 1980. “Magnetic Field and Magnetic Isotope Effects in Organic Photochemical Reactions: A Novel Probe of Reaction Mechanisms and a Method for Enrichment of Magnetic Isotopes.” Accounts of Chemical Research 13(10): 369–377. DOI: 10.1021/ar50154a005.
- [41] N. J. Turro. 1983. “Influence of Nuclear Spin on Chemical Reactions: Magnetic Isotope and Magnetic Field Effects (A Review).” Proceedings of the National Academy of Sciences 80(2): 609–621. DOI: 10.1073/pnas.80.2.609.
- [42] M. G. Martl, R. Schaller, Hummel. 1985. “Influence of an External Magnetic Field on the Cross‐Linking Reaction of 1,4‐Polybutadiene with Bis(2,4‐Dichlorobenzoyl) Peroxide.” Macromolecular Chemistry and Physics 186(12): 2615–2622. DOI: 10.1002/macp.1985.021861222.
- [43] M. G. Martl, T. Pongratz, K. Hummel. 1983. “Influence of a Magnetic Field on the Cross‐Linking of 1,4‐Polybutadiene with Diaroyl Peroxides.” Macromolecular: Rapid Communications 4(10): 649–652. DOI: 10.1002/marc.1983.030041003.
- [44] R. Schaller, M. G. Martl, K. Hummel. 1987. “Comparative Studies of Photocrosslinking of a Butadiene-Styrene Copolymer without and with a Magnetic Field.” European Polymer Journal 23(4): 259–263. DOI: 10.1016/0014-3057(87)90145-5.
- [45] K. Hummel, R. Schaller, M. G. Martl. 1987. “Magnetic Field Effect on the Photocrosslinking of a Butadiene-Styrene Copolymer Modified by Benzoyl or Phenylacetyl Groups.” Polymer Bulletin 17: 369–373. DOI: 10.1007/BF00955722.
- [46] H. Morita, I. Higasayama, T. Yamaoka. 1986. “Magnetic Field Effect on Photocrosslinking Reaction of Bromo- and Chloromethylated Polystyrene.” Chemistry Letters 15(6): 963–966. DOI: 10.1246/cl.1986.963.
- [47] H. Morita, N. Uchino, Y. Nakamura, T. Yamaoka. 1989. “Magnetic Filed Effect on Sensitized Photocrosslinking Reaction of Azidomethylated Polystyrene.” Journal of Applied Polymer Science 38(11): 1997–2007. DOI: 10.1002/app.1989.070381104.
- [48] R. B. Morgunov. 2004. “Spin Micromechanics in the Physics of Plasticity.” Physics–Uspekhi 47(2): 125–147. DOI: 10.1070/pu2004v047n02abeh001683.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f10e37f7-51a6-48e1-80ef-b20ea5a2c0cb