PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Mixtures of selected n-alkanes and Au nanoparticels for optical fiber threshold temperature transducers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermo-optic properties enhancement of the bi-stable temperature threshold sensors based on a partially filled photonic crystal fiber was reported. Previously tested transducers filled with a selected group of pure n-alkanes had in most cases differences between switching ON and OFF states. Therefore, the modification of filling material by using additional crystallization centers in the form of gold nanoparticles was applied to minimize this undesirable effect. The evaluation of the thermodynamic properties of pentadecane and its mixtures with 14 nm spherical Au nanoparticles based on the differential scanning calorimetry measurements was presented. Optical properties analysis of sensors prepared with these mixtures has shown that they are bounded with refractive index changes of the filling material. Particular sensor switches ON before melting process begins and switches OFF before crystallization starts. Admixing next group of n-alkanes with these nanoparticles allows to design six sensors transducers which change ON and OFF states at the same temperature. Thus, the transducers with a wider temperature range for fiber-optic multi-threshold temperature sensor tests will be used.
Rocznik
Strony
220--228
Opis fizyczny
Bibliogr. 27 poz., rys., wykr., tab.
Twórcy
autor
  • Advanced Technologies and Chemistry Faculty, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland.
autor
  • Advanced Technologies and Chemistry Faculty, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland.
  • Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, 163 Pomorska St., 90-236 Lodz, Poland.
  • Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, 163 Pomorska St., 90-236 Lodz, Poland.
  • Advanced Technologies and Chemistry Faculty, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland.
Bibliografia
  • [1] Algorri, J. F. et al. Infiltrated Photonic Crystal Fibers for Sensing Applications. Sensors 18, 4263 (2018). https://doi:10.3390/s18124263
  • [2] Markos, Ch. et al. Hybrid photonic–crystal fiber. Rev. Mod. Phys. 89, 045003 (2017) https://doi.org/10.1103/RevModPhys.89.045003
  • [3] Wang, Y. et al. Temperature–controlled transformation in fiber types of fluid–filled photonic crystal fibers and applications. Opt. Lett. 35 (1), 88–90 (2010). https://doi.org/10.1364/OL.35.000088
  • [4] Wang, Y. et al. Thermo–optic switching effect based on fluid–filled photonic crystal fibre. IEEE Photonic Tech. L 22 (3), 164–166 (2010). https://doi.org/10.1109/LPT.2009.2037242
  • [5] Larsen, T. & Bjarklev, A. Optical devices based on liquid crystal photonic bandgap fibers. Opt. Express 11, 2589–2596 (2003). https://doi.org/10.1364/OE.11.002589
  • [6] Ertman, S., Rutkowska, K. & Wolinski, T. R. Recent progress in liquid–crystal optical fibers and their applications in photonics. J. Lightwave Technol. 37 (11), 2516–2526 (2019). https://doi.org/10.1109/JLT.2018.2869916
  • [7] Lee, Ch., Wu, Ch., Chem, Ch., Jau, H. & Lin, T. Polarization–independent bistable light valve in blue phase liquid crystal filled photonic crystal fiber. Appl. Opt. 52, 4849–4853 (2013). https://doi.org/10.1364/AO.52.004849
  • [8] Marć, P., Przybysz, N., Stasiewicz, K. & Jaroszewicz, L. R. Alkanes–filled photonic crystal fibers as sensor transducers. Proc. SPIE 9634, 96345O (2015). https://doi.org/10.1117/12.2191417
  • [9] Marć, P., Przybysz, N., Stasiewicz, K. & Jaroszewicz, L. R. Multilevel temperature threshold sensor based on Photonic Crystal Fiber transducers. Proc. SPIE 10323, 103231T (2017). https://doi.org/10.1117/12.2262101
  • [10] Marć, P., Przybysz, N., Molska, A. & Jaroszewicz, L. R. Photonic Crystal Fiber Transducers for an Optical Fiber Multilevel Temperature Threshold Sensor. J. Lightwave Techn. 36, 898–903 (2018). http://doi.org/10.1109/JLT.2017.2759202
  • [11] Peng, Y., Hou, J., Zhang, H., Xiao, R. & Lu, Q. Temperature sensing using the bandgap–like effect in a selectively liquid–filled photonic crystal fiber. Opt Lett. 38, 263–265 (2013). https://doi.org/10.1364/OL.38.000263
  • [12] Lesiak, P. et al. Self–Organized, One–Dimensional Periodic Structures in a Gold Nanoparticle–Doped Nematic Liquid Crystal Composite. ACS Nano 13, 10154–10160 (2019). https://doi.org/10.1021/acsnano.9b03302
  • [13] Marć, P. et al. Thermo – optic properties of Co nanofluid filled microstructured fiber. Proc. SPIE 8794, 87942J (2013). https://doi.org/10.1117/12.2025233
  • [14] Miao, Y., Liu, B., Zhang, K., Liu, Y. & Zhang, H. Temperature tunability of photonic crystal fibers filled with Fe3O4 nanopparticles fluid. App. Phys. Lett. 98, 021103 (2011). https://doi.org/10.1063/1.3540647
  • [15] Thakur, H. V., Nalawade, S. M., Gupta, S. & Kitture, R. Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection. App. Phys. Lett. 99, 161101 (2011). https://doi.org/10.1063/1.3651490
  • [16] Scolari, L. et al. Frequency tunability of solid–core photonic crystal fibers filled with nanoparticle–doped liquid crystals. Opt. Express 17, 3754–3764 (2009). https://doi.org/10.1364/OE.17.003754
  • [17] Przybysz, N., Marć, P., Tomaszewska, E., Grobelny J. & Jaroszewicz, L. R. Pure and Au nanoparticles doped higher alkanes for an optical fiber temperature threshold sensor. Proc. SPIE 10231, 1023125 (2017). https://doi.org/10.1117/12.2265867
  • [18] Westbrook, P. S. et al. Cladding–mode resonances in hybrid polymer–silica microstructured optical fiber gratings. IEEE Photonic Tech L 12 (5) 495–497 (2000). http://doi.org/10.1109/68.841264
  • [19] Balakrishnan, M. et al. Polymer–Filled Silica Fibers as a Step Towards Electro–Optically Tunable Fiber Devices. J. Lightwave Techn. 30 (12) 1931–1936 (2010). https://doi.org/10.1109/LPT.2009.2037242
  • [20] Canh, T. et al. Supercontinuum generation in all–normal dispersion suspended core fiber infiltrated with water. Opt. Mater. Express 10, 1733–1748 (2020). https://doi.org/10.1364/OME.395936
  • [21] Kim, S. E. et al. Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion. Opt. Express 20, 1385–1391 (2012). https://doi.org/10.1364/OE.20.001385
  • [22] Stasiewicz, K. & Musiał, J. Threshold temperature optical fiber sensors. Opt. Fib. Tech. 32, 111–118 (2016). https://doi.org/10.1016/j.yofte.2016.10.009
  • [23] Said, A., Salah, A. & Fattah, G. A. Enhanced Thermo–Optical Switching of Paraffin–Wax Composite Spots under Laser Heating. Materials 10 (5), 525 (2017). https://doi.org/10.3390/ma10050525
  • [24] Jeevanandam, J. et al. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 9, 1050–1074 (2018). https://doi.org/10.3762/bjnano.9.98
  • [25] Toddin, I. Processing and properties of inorganic nanomaterials. in Nanoscale Science and Technology (eds. Kelsall, R., Hamley, I.W. & Geoghegan, M.) 237– 245 (John Wiley & Sons, Inc., 2005). https://doi.org/10.1002/0470020873
  • [26] Taggart, A. M., Voogt, F., Clydesdale, G. & Roberts, K. J. An examination of the nucleation kinetics of n–alkanes in the homologous series C13H28 to C32H66, and their relationship to structural type, associated with crystallization from stagnant melts, Langmuir 12, 5722–5728 (1996). https://doi.org/10.1021/la9600816
  • [27] Johnson, J. F. Phase Transformations in Commercial Paraffin Waxes. A refractometric study. Ind. Eng. Chem. 46, 1046–1048 (1954). https://doi.org/10.1021/ie50533a062
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021). 2. This work was financially supported by the Ministry of Science and Higher Education as a statutory activity of Technical Physics Applications Department of the Military University of Technology.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f10d17fe-d18d-458a-bfbb-4f38d639e96b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.