PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Technological Process of Anaerobic Digestion of Cattle Manure in a Bioenergy Plant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Anaerobic digestion consists of the biological decomposition of organic waste under anaerobic conditions by various types of microorganisms. The purpose of this study was to evaluate the effect of the fermentation starter of methanogenic bacteria on the anaerobic digestion of cattle manure in a bioenergy plant. The effect of various methods (physical, microbiological and chemical) on the digestion of cattle manure was studied under mesophilic (35°C) and thermophilic (50°C) modes. The results of the study showed that the content of volatile fatty acids and the pH of the medium was in the optimal range, the yield of methane biogas (CH4) during anaerobic digestion at 35°C was 0.45 m3/kg and at 50°C was 0.58 m3/kg. The data obtained indicate that the thermophilic mode (50°C) of anaerobic digestion of manure effectively affects the yield of methane biogas. Based on anaerobic digestion in mesophilic mode, a fermentation starter of methanogenic cultures adapted to thermophilic conditions was obtained. According to cultural and morphological characteristics, the cultures were assigned to the genera Methanopyrus and Methanococcus. The results of a study on the effect of the fermentation starter of methanogenic bacteria in fermented manure at 50°C showed that with an increase in the dose of the fermentation starter, the methane-forming ability of anaerobic bacteria increased and the process of methane biogas release intensified (from 0.36 m3/kg to 0.79 m3/kg). Besides, the dose of methanogenic fermentation starter based on Methanopyrus and Methanococcus isolates (28 kg) was determined. When the bioenergy plant is launched in thermophilic mode, the release of biogas increases by 2.2 times, and the digestion period decreases to 10 days.
Rocznik
Strony
131--142
Opis fizyczny
Bibliogr. 59 poz., rys., tab.
Twórcy
  • Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, 13 Kazhymukan str., 010008, Nur-Sultan, Republic of Kazakhstan
  • Faculty of Food Technology, Almaty Technological University, 44 Baitursynova str., 050000, Almaty, Republic of Kazakhstan
  • Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, 13 Kazhymukan str., 010008, Nur-Sultan, Republic of Kazakhstan
  • Faculty of Biology and Biotechnology, Аl-Farabi Kazakh National University, 71 al-Farabi Ave., 050040, Almaty, Republic of Kazakhstan
Bibliografia
  • 1. Agnew, J.M., Leonard, J.J. 2003. The physical properties of compost. Compost Science & Utilization, 11(3), 238–264.
  • 2. Ahmadi-Pirlou, M., Ebrahimi-Nik, M., Khojastehpour, M., Ebrahimi, S.H. 2017. Mesophilic co-digestion of municipal solid waste and sewage sludge: effect of mixing ratio, total solids, and alkaline pretreatment. International Biodeterioration & Biodegradation, 125, 97–104.
  • 3. Almomani, F., Bhosale, R., Khraisheh, M., Shawaqfah, M. 2019. Enhancement of biogas production from agricultural wastes via pre-treatment with advanced oxidation processes. Fuel, 253, 964–974.
  • 4. Almomani, F., Shawaqfah, M., Bhosale, R.R., Kumar, A., Khraisheh, M.A.M. 2017. Intermediate ozonation to enhance biogas production in batch and continuous systems using animal dung and agricultural waste. International Biodeterioration and Biodegradation, 119, 176–187.
  • 5. Appels, L., Van Assche, A., Willems, K., Degreve, J., Van Impe, J., Dewil, R. 2011. Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge. Bioresource Technology, 102(5), 4124–4130. http://dx.doi.org/10.1016/j.biortech.2010.12.070
  • 6. Araji, A., Abdo, Z., Joyce, P. 2001. Efficient use of animal manure on cropland-economic analysis. Bioresource Technology, 79(2), 179–191.
  • 7. Astals, S., Nolla-Ardevol, V., Mata-Alvarez, J. 2013. Thermophilic co-digestion of pig manure and crude glycerol: Process performance and digestate stability. Journal of Biotechnology, 166(3), 97–104.
  • 8. Astals, S., Venegas, C., Peces, M., Jofre, J., Lucena, F., Mata-Alvarez, J. 2012. Balancing hygienization and anaerobic digestion of raw sewage sludge. Water Research, 46(19), 6218–6227.
  • 9. Bolzonella, D., Battistoni, P., Susinii, C., Cecchi, F. 2006. Anaerobic codigestion of waste activated sludge and OFMSW: The experiences of Viareggio and Treviso plants (Italy). Water Science and Technology, 53(8), 203–211.
  • 10. Bolzonella, D., Cavinato, C., Fatone, F., Pavan, P., Cecchi, F. 2012. High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study. Waste Management, 32(6), 1196–1201.
  • 11. Chen, G.Y., Zheng, Z., Zou, X.-X., Li, J.-H., Yang, S.-G. 2009. Anaerobic co-digestion of rice straw and swine feces. Journal of Agro-Environment Science, 28(1), 185–188.
  • 12. Chen, Y., Cheng, J.J., Creamer, K.S. 2008. Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99(10), 4044–4064.
  • 13. Cox, C.S. 1993. Roles of water molecules in bacteria and viruses. Origins of Life and Evolution of the Biosphere, 23(1), 29–36.
  • 14. Dahunsi, S., Oranusi, S., Owolabi, J.B., Efeovbokhan, V.E. 2016. Mesophilic anaerobic co-digestion of poultry dropping and Carica papaya peels: Modelling and process parameter optimization study. Bioresource Technology, 216, 587–600. http://dx.doi.org/10.1016/j.biortech.2016.05.118
  • 15. De la Rubia, M.A., Riau, V., Raposo, F., Borja, R. 2013. Thermophilic anaerobic digestion of sewage sludge: focus on the influence of the start-up: A review. Critical Reviews in Biotechnology, 33(4), 448–460.
  • 16. Demirer, G., Chen, S. 2004. Effect of retention time and organic loading rate on anaerobic acidification and biogasification of dairy manure. Journal of Chemical Technology and Biotechnology, 79(12), 1381–1387.
  • 17. Druzyanova, V.P. 2014. Biogazovaya ustanovka dlya pererabotki otkhodov chastnykh zhivotnovodcheskikh khozyaistv primenitelno k usloviyam Respubliki Sakha (Yakutiya) [A biogas plant for processing waste from private livestock farms in the conditions of the Republic of Sakha (Yakutia)]. In: Nauka i obrazovanie v XXI veke– Tambov. Yukom Consulting Company LLC, Tambov, 57–61. (in Russian)
  • 18. Eklind, Y., Kirchmann, H. 2000. Composting and storage of organic household waste with different litter amendments. II: Nitrogen turnover and losses. Bioresource Technology, 74(2), 125–133.
  • 19. El Asri, O., Afilal, M.E., Laiche, H., Elfarh, L. 2020. Evaluation of physicochemical, microbiological, and energetic characteristics of four agricultural wastes for use in the production of green energy in Moroccan farms. Chemical and Biological Technologies in Agriculture, 7, 21. https://doi.org/10.1186/s40538-020-00187-3
  • 20. Filidei, S., Masciandaro, G., Ceccanti, B. 2003. Anaerobic digestion of olive oil mill effluents: evaluation of wastewater organic load and phytotoxicity reduction. Water, Air, & Soil Pollution, 145(1–4), 79–94.
  • 21. Fisgativa, H., Tremier, A., Dabert, P. 2016. Characterizing the variability of food waste quality: a need for efficient valorisation through anaerobic digestion. Waste Management, 50, 264–274.
  • 22. Francese, A.P., Aboagye-Mathiesen, G., Olesen, T., Cordoba, P.R., Sineriz, F. 2000. Feeding approaches for biogas production from animal wastes and industrial effluents. World Journal of Microbiology and Biotechnology, 16(2), 147–150.
  • 23. Garmash, S.N. 2013. Anaerobnaya biokonversiya organicheskikh otkhodov v biogaz [Anaerobic bioconversion of organic waste to biogas]. Voprosy khimii i khimicheskoi tekhnologii, 6, 32–40. (in Russian)
  • 24. Guerra-Rodrıguez, E., Diaz-Ravina, M., Vazquez, M. 2001. Co-composting of chestnut burr and leaf litter with solid poultry manure. Bioresource Technology, 78(1), 107–109.
  • 25. Ho, D.P., Jensen, P.D., Batstone, D.J. 2013. Methanosarcinaceae and acetate-oxidizing pathways dominate in high-rate thermophilic anaerobic digestion of waste-activated sludge. Applied and Environmental Microbiology, 79(20), 6491–6500.
  • 26. Huang, J., Crookes, R.J. 1998. Assessment of simulated biogas as a fuel for the spark ignition engine. Fuel, 77(15), 1793–1801.
  • 27. Hungate, R.E. 1969. A roll tube method for cultivation of strict anaerobes. In: D.W. Ribbons, J.R. Norris (Eds.), Methods in microbiology, 13th ed. Academic Press, New York, 117–132.
  • 28. Jacobs, K., Wind, L., Krometis, L.-A., Hession, W.C., Pruden, A. 2019. Fecal indicator bacteria and antibiotic resistance genes in storm runoff from dairy manure and compost-amended vegetable plots. Journal of Environmental Quality, 48(4), 1038–1046.
  • 29. Kendall, K., Finnerty, C.M., Saunders, G., Chung, J.T. 2002. Effects of dilution on methane entering an SOFC anode. Journal of Power Sources, 106(1–2), 323–327.
  • 30. Khalid, A., Arshad, M., Anjum, M., Mahmood, T., Dawson, L. 2011. The anaerobic digestion of solid organic waste. Waste Management, 31(8), 1737–1744.
  • 31. Kim, H.W., Han, S.K., Shin, H.S. 2006. Simultaneous treatment of sewage sludge and food waste by the unified high-rate anaerobic digestion system. Water Science and Technology, 53(6), 29–35.
  • 32. Kim, J., Park, C., Kim, T.H., Lee, M., Kim, S., Kim, S.W., Lee, J. 2003. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. Journal of Bioscience and Bioengineering, 95(3), 271–275.
  • 33. Liu, C., Wachemo, A.C., Tong, H., Shi, S., Zhang, L., Yuan, H., Li, X. 2018. Biogas production and microbial community properties during anaerobic digestion of corn stover at different temperatures. Bioresource Technology, 261, 93–103. https://doi.org/10.1016/j.biortech.2017.12.076
  • 34. Macias-Corral, M., Samani, Z., Hanson, A., Smith, G., Funk, P., Yu, H., Longworth, J. 2008. Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresource Technology, 99(17), 8288–8293.
  • 35. Mahanta, P., Dewan, A., Saha, U., Kalita, P. 2004. Influence of temperature and total solid concentration on the gas production rate of biogas digester. Journal of Energy in Southern Africa, 15(4), 112–117.
  • 36. Moen, G., Stensel, H.D., Lepisto, R., Ferguson, J.F. 2003. Effect of solids retention time on the performance of thermophilic and mesophilic digestion of combined municipal wastewater sludges. Water Environment Research, 75(6), 539–548.
  • 37. Mulka, R., Szulczewski, W., Szlachta, J., Prask, H. 2016. The influence of carbon content in the mixture of substrates on methane production. Clean Technologies and Environmental Policy, 18(3), 807–815.
  • 38. Ni, H., Han, Y., Cao, J., Chen, L.W.A., Tian, J., Wang, X., Chow, J.C., Watson, J.G., Wang, Q., Wang, P., Li, H., Huang, R.-J. 2015. Emission characteristics of carbonaceous particles and trace gases from open burning of crop residues in China. Atmospheric Environment, 123(Part B), 399–406.
  • 39. Nikitina, A.A. 2018. Biotekhnologicheskie i mikrobiologicheskie aspekty termofilnoi anaerobnoi pererabotki kommunalnykh organicheskikh otkhodov pri vysokoi nagruzke po substratu [Biotechnological and microbiological aspects of thermophilic anaerobic processing of municipal organic waste at a high load on the substrate]. PhD Thesis, Institute of Microbiology named after S.N. Vinogradsky, Moscow, 165. (in Russian)
  • 40. Padula, D.J., Madigan, T.L., Nowak, B.F. 2012. Australian farmed Yellowtail Kingfish (Seriola lalandi) and Mulloway (Argyrosomus hololepidotus): Residues of metallic, agricultural and veterinary chemicals, dioxins and polychlorinated biphenyls. Chemosphere, 86(7), 709–717.
  • 41. Pfennig, N. 1965. Anreicherungskulturen für rote und grüne schwefelbakterien. Zbl. Bakt. I.Abt. Orig. Suppl., 1, 179-189 (in German)
  • 42. Ren, X., Wang, Q., Awasthi, M.K., Zhao, J., Wang, J., Liu, T., Li, R., Zhang, Z. 2019. Improvement of cleaner composting production by adding Diatomite: From the nitrogen conservation and greenhouse gas emission. Bioresource Technology, 286, 121377.
  • 43. Rynk, R., Ed. 1992. On-farm composting handbook. Cooperative Extension. Northeast Regional Agricultural Engineering Service, Ithaca.
  • 44. Sambo, A., Garba, B., Danshehu, B. 1995. Effect of some operating parameters on biogas production rate. Renewable Energy, 6(3), 343–344.
  • 45. Schnürer, A. 2016. Biogas production: Microbiology and technology. In: R. Hatti-Kaul, G. Mamo, B. Mattiasson (Eds.), Anaerobes in biotechnology. Advances in biochemical engineering/biotechnology, vol. 156. Springer, Cham, 195–234.
  • 46. Song, C., Yuan, W., Shan, S., Ma, Q., Zhang, H., Wang, X., Niazi, N.K., Wang, H. 2020. Changes of nutrients and potentially toxic elements during hydrothermal carbonization of pig manure. Chemosphere, 243, 125331.
  • 47. Sun, J., Peng, H., Chen, J., Wang, X., Wei, M., Li, W., Yang, L., Zhang, Q., Wang, W., Mellouki, A. 2016. An estimation of CO2 emission via agricultural crop residue open field burning in China from 1996 to 2013. Journal of Cleaner Production, 112, 2625–2631.
  • 48. Tanimu, M.I., Mohd Ghazi, T.I., Harun, M.R., Idris, A. 2015. Effects of feedstock carbon to nitrogen ratio and organic loading on foaming potential in mesophilic food waste anaerobic digestion. Applied Microbiology and Biotechnology, 99(10), 4509–4520.
  • 49. Tassew, F.A., Bergland, W.H., Dinamarca, C., Bakke, R. 2020. Influences of temperature and substrate particle content on granular sludge bed anaerobic digestion. Applied Sciences, 10(1), 136. https://doi.org/10.3390/app10010136
  • 50. Van Herle, J., Marechal, F., Leuenberger, S., Favrat, D. 2003. Energy balance model of a SOFC cogenerator operated with biogas. Journal of Power Sources, 118(1), 375–383.
  • 51. Wainaina, S, Lukitawesa, Kumar Awasthi, M., Taherzadeh, M.J. 2019. Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered, 10(1), 437–458.
  • 52. Xiao, R., Zhu, Y., Li, Y., Liu, B. 2013. Studies on vascular infection of Fusarium oxysporum f. sp. cubense race 4 in banana by field survey and green fluorescent protein reporter. ESci Journal of Plant Pathology, 2(1), 44–51.
  • 53. Xu, F., Li, Y., Ge, X., Yang, L., Li, Y. 2018. Anaerobic digestion of food waste–Challenges and opportunities. Bioresource Technology, 247, 1047–1058.
  • 54. Yadvika, Santosh, Sreekrishnan, T., Kohli, S., Rana, V. 2004. Enhancement of biogas production from solid substrates using different techniquesa review. Bioresource Technology, 95(1), 1–10. https://doi.org/10.1016/j.biortech.2004.02.010
  • 55. Ye, D., Li, T., Chen, G., Zheng, Z., Yu, H., Zhang, X. 2014. Influence of swine manure on growth, P uptake and activities of acid phosphatase and phytase of Polygonum hydropiper. Chemosphere, 105, 139–145.
  • 56. Yeom, J.-R., Yoon, S.-U., Kim, C.-G. 2017. Quantification of residual antibiotics in cow manure being spread over agricultural land and assessment of their behavioral effects on antibiotic resistant bacteria. Chemosphere, 182, 771–780.
  • 57. Yu, Q., Tian, Zh., Liu, J., Zhou, J., Yan, Zh., Yong, X., Jia, H., Wu, X., Wei, P. 2018. Biogas production and microbial community dynamics during anaerobic digestion of rice straw at 39–50°C: A pilot study. Energy Fuels, 32(4), 5157–5163. https://doi.org/10.1021/acs.energyfuels.7b04042
  • 58. Zhang, N., Zheng, H., Hu, X., Zhu, Q., Stanislaus, M.S., Li, S., Zhao, C., Wang, Q., Yang, Y. 2019. Enhanced bio-methane production from ammonium-rich waste using eggshell-and lignite-modified zeolite (ELMZ) as a bio-adsorbent during anaerobic digestion. Process Biochemistry, 81, 148–155.
  • 59. Zhang, P., Zeng, G., Zhang, G., Li, Y., Zhang, B., Fan, M. 2008. Anaerobic co-digestion of biosolids and organic fraction of municipal solid waste by sequencing batch process. Fuel Processing Technology, 89(4), 485–489.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f10d0290-4fdb-41da-8430-7b7e7e84572c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.