Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In order to realise noise measurement and target detection, this paper designs a long range autonomous underwater vehicle (LRAUV), namely ‘Petrel’, which contains a variable buoyancy system, attitude adjustment mechanisms, pitch and heading control planes, acoustic vector sensor (AVS) and a propeller. The variable buoyancy system can realise the adaptation of Petrel LRAUV to the density at different depths, thus reducing the useless work of overcoming buoyancy during sailing, and significantly increasing the range to 2,000 km. Furthermore, the Petrel LRAUV has four observation modes (gliding, cruising, station-keeping and drifting), which are driven by the synchronous movement of a variable buoyancy system, attitude adjustment mechanisms and a propeller. The results of long range sea trial missions demonstrate that the Petrel LRAUV could continuously monitor environmental parameters in the ocean, such as temperature, salinity, and ocean currents over several months. Besides, the outcomes of the passive target detection mission reveal that the vehicle, equipped with the AVS system, effectively tracked the bearing changes of the moving surface vessel.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
64--70
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, China
- Qingdao Collaborative Innovation Research Institute, Qingdao, China
autor
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, China
autor
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, China
- Qingdao Collaborative Innovation Research Institute, Qingdao, China
autor
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, China
autor
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, China
- The Joint Laboratory of Ocean Observing and Detection, Laoshan Laboratory, Qingdao, China
autor
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, China
- The Joint Laboratory of Ocean Observing and Detection, Laoshan Laboratory, Qingdao, China
Bibliografia
- 1 Venkatesan R, Tandon A, D’Asaro E, Atmanand MA. Observing the oceans in real time. Springer International Publishing, 2018. https://doi.org/10.1007/978-3-319-66493-4_1.
- 2 Jensen FB, Kuperman WA, Porter MB, Schmidt H. Computational ocean acoustics. Springer New York; 2011. https://doi.org/10.1007/978-1-4419-8678-8.
- 3 Dhanak MR, Xiros NI. Eds., Springer handbook of ocean engineering. Springer Cham; 2016. https://doi.org/10.1007/978-3-319-16649-0.
- 4 Rogers EO, JG G, Smith WS, Denny GF, Farley PJ. Underwater acoustic glider. IEEE International Geoscience and Remote Sensing Symposium, vol.3, Sep. 2004, pp. 2241–2244. https://doi.org/10.1109/IGARSS.2004.1370808.
- 5 Griffiths G. Ed., Technology and applications of autonomous underwater vehicles. CRC Press; 2002. https://doi.org/10.1201/9780203522301.
- 6 Hobson BW, Bellingham JG, Kieft B, McEwen R, Godin M, Zhang Y. Tethys-class long range AUVs - extending the endurance of propeller-driven cruising AUVs from days to weeks. IEEE/OES Autonomous Underwater Vehicles (AUV), Southampton, United Kingdom: IEEE, Sep. 2012, pp. 1–8. https://doi.org/10.1109/AUV.2012.6380735.
- 7 Roper DT, Phillips AB, Harris CA, Salavasidis G, Pebody M, Templeton R. Autosub long range 1500: An ultra-endurance AUV with 6000 km range, OCEANS 2017, Aberdeen, United Kingdom: IEEE, Jun. 2017, pp. 1–5. https://doi.org/10.1109/OCEANSE.2017.8084928.
- 8 Furlong ME, Paxton D, Stevenson P, Pebody M, McPhail SD, Perrett J. Autosub long range: A long range deep diving AUV for ocean monitoring, 2012 IEEE/OES Autonomous Underwater Vehicles (AUV), Southampton, United Kingdom: IEEE, Sep. 2012, pp. 1–7. https://doi.org/10.1109/AUV.2012.6380737.
- 9 Liu T, Jiang Z, Li S, Gu H. Explorer1000: A long endurance AUV with variable ballast systems, 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), Kobe: IEEE, May 2018, pp. 1–6. https://doi.org/10.1109/OCEANSKOBE.2018.8559249.
- 10 Zimmerman R, D’Spain GL, Chadwell CD. Decreasing the radiated acoustic and vibration noise of a mid-size AUV. IEEE Journal of Oceanic Engineering, vol. 30, no. 1, Jan. 2005, pp. 179–187. https://doi.org/10.1109/JOE.2004.836996.
- 11 Grund M, Freitag L, Preisig J, Ball K. The PLUSNet underwater communications system: Acoustic telemetry for undersea surveillance. OCEANS 2006, Boston, MA, USA: IEEE, Sep. 2006, pp. 1–5. https://doi.org/10.1109/OCEANS.2006.307036.
- 12 Eiler JH, Grothues TM, Dobarro JA, Masuda MM. Comparing autonomous underwater vehicle (AUV) and vessel-based tracking performance for locating acoustically tagged fish. Marine Fisheries Review, vol. 75, no. 4, pp. 27–42, Feb. 2014. https://doi.org/10.7755/MFR.75.4.2.
- 13 Nielsen PL, Muzi L, Siderius M. Seabed characterisation from ambient noise using short arrays and autonomous vehicles. IEEE Journal of Oceanic Engineering, vol. 42, no. 4, pp. 1094–1101, Oct. 2017. https://doi.org/10.1109/JOE.2017.2712338.
- 14 Premus V, Abbot P, Gedney C, Christman R, Helfrick M, Campell R, Douglas K. IRAP: An integrated, real-time, autonomous passive acoustic monitoring system for beaked whale detection, localisation, and tracking. Journal of the Acoustical Society of America, vol. 140, no. 4, pp. 3181–3181, 2016. https://doi.org/10.1121/1.4969998.
- 15 Terracciano DS, Costanzi R, Manzari V, Stifani M, Caiti A. Passive bearing estimation using a 2-D acoustic vector sensor mounted on a hybrid autonomous underwater vehicle. IEEE Journal of Oceanic Engineering, vol. 47, no. 3, pp. 799–814, Jul. 2022. https://doi.org/10.1109/JOE.2021.3132647.
- 16 Yang S, Shang X, Sun T, Wang X, Zhao H, Fa S, Wang Y. A new dead reckoning method for HAUVs assisted by a dynamic model with ocean current information. Ocean Engineering, vol. 295, p. 116847, 2024. https://doi.org/10.1016/j.oceaneng.2024.116847.
- 17 Silvia MT, Richards RT. A theoretical and experimental investigation of low-frequency acoustic vector sensors. In Oceans ’02 MTS/IEEE, Biloxi, MI, USA: IEEE, 2002, pp. 1886–1897. https://doi.org/10.1109/OCEANS.2002.1191918.
- 18 Sun Q, Zhou H. An acoustic sea glider for deep-sea noise profiling using an acoustic vector sensor. Polish Maritime Research, vol. 29, no. 1, pp. 57–62, Mar. 2022. https://doi.org/10.2478/pomr-2022-0006.
- 19 Wang X, Wang Y, Wang P, Yang S, Niu W, Yang Y. Design, analysis, and testing of petrel acoustic autonomous underwater vehicle for marine monitoring. Physics of Fluids, vol. 34, no. 3, p. 037115, Mar. 2022. https://doi.org/10.1063/5.0083951.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f10c2eb1-7e78-4102-9636-0d91a769d003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.