PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reconfigurable smart metamaterial for energy transfer control in alternating magnetic fields

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a metamaterial with reconfigurable effective properties, intended to operate in alternating magnetic fields. The structure of a resonator, based on a series connection of a planar inductor and a lumped capacitor, is expanded using an additional capacitor with a MOSFET transistor. Due to the presence of the controllable active element, it is possible to dynamically change the phase of the current flowing through a meta-cell and shift a frequency response within an assumed range. Since the transistor is driven by the unipolar square wave with a changeable duty cycle and time delay, two closed-loop controllers were utilized to achieve a smart material, able to automatically attain and maintain the imposed resonant frequency. As a result, the complex effective magnetic permeability of the metamaterial can be smoothly changed, during its operation, via an electrical signal, i.e. by adjusting the parameters of a control signal of the active element. The design of the meta-cell, as well as the measuring, data operation and control part, are presented in detail. An illustrative system is examined in terms of achieving the user-defined resonance point of the metamaterial. Transient responses with estimated settling times and steady-state errors and the effective permeability characteristics for the exemplary cases are shown. The meta-cell is also tested experimentally to validate the theoretically determined effective properties.
Rocznik
Strony
art. no. e149169
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D Str., 15-351 Białystok, Poland
  • Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D Str., 15-351 Białystok, Poland
Bibliografia
  • [1] R. Ghatak and A. Gorai, “Metamaterials: Engineered Materials and its Applications in High Frequency Electronics,” Encyclopedia of Materials: Electronics, vol. 3, pp. 419–440, 2023, doi: 10.1016/B978-0-12-819728-8.00022-X.
  • [2] J.J. Yang, Y. Francescato, S.A. Maier, F. Mao, and M. Huang, “Mu and epsilon near zero metamaterials for perfect coherence and new antenna designs,” Opt. Express, vol. 22, no 8, pp. 9107–9114, 2014, doi: 10.1364/OE.22.009107.
  • [3] V.G. Veselago, “Electrodynamics of substances with simultaneously negative values of 𝜀 and 𝜇,” Sov. Phys. Usp., vol. 10, pp. 509–514, 1968, doi: 10.1070/PU1968v010n04ABEH003699.
  • [4] Z. Manzoor, “Aperiodic hyperbolic metamaterial superlens with random distribution,” Optik, vol. 242, p. 167290, 2021, doi: 10.1016/j.ijleo.2021.167290.
  • [5] S. Haxha, F. AbdelMalek, F. Ouerghi, M.D.B. Charlton, A. Aggoun, and X. Fang, “Metamaterial Superlenses Operating at Visible Wavelength for Imaging Applications,” Sci. Rep., vol. 8, p. 16119, 2018, doi: 10.1070/PU1968v010n04ABEH003699.
  • [6] W. Jiang et al., “Room-temperature broadband quasistatic magnetic cloak,” NPG Asia Mater., vol. 9, p. e341, 2017, doi: 10.1038/am.2016.197.
  • [7] M. Boyvat and C. Hafner, “Molding the flow of magnetic field with metamaterials: magnetic field shielding,” PIER, vol. 126, pp. 303–316, 2012, doi: 10.2528/PIER12022010.
  • [8] C. Navau, J. Prat-Camps, and A. Sanchez, “Magnetic Energy Harvesting and Concentration at a Distance by Transformation Optics,” Phys. Rev. Lett., vol. 109, p. 263903, 2012, doi: 10.1103/PhysRevLett.109.263903.
  • [9] F. Sun and S. He, “Static magnetic field concentration and enhancement using magnetic materials with positive permeability,” PIER, vol. 142, p. 579, 2014, doi: 10.2528/PIER13082102.
  • [10] J. Prat-Camps, C. Navau, and A. Sanchez, “A magnetic wormhole,” Sci. Rep., vol. 5, p. 12488, 2015, doi: 10.1038/srep12488.
  • [11] C. Qian et al., “Deep-learning-enabled self-adaptive microwave cloak without human intervention,” Nat. Photonics, vol. 14, pp. 383–390, 2020, doi: 10.1038/s41566-020-0604-2.
  • [12] T. Ramachandran, M.R.I. Faruque, and M.T. Islam, “A dual band left-handed metamaterial-enabled design for satellite applications,” Results Phys., vol. 16, p. 102942, 2020, doi: 10.1016/j.rinp.2020.102942.
  • [13] V.P. Sarin, R.K. Raj, P.S. Sreekala, and K. Vasudevan, “A Metamaterial Inspired Low-Scattering Electric Quadrupole Antenna,” Wireless Pers. Commun., vol. 132, pp. 131–145, 2023, doi: 10.1007/s11277-023-10595-x.
  • [14] A. Steckiewicz, “Homogenization of the vertically stacked medium frequency magnetic metamaterials with multi-turn resonators,” Sci. Rep., vol. 12, p. 20333, 2022, doi: 10.1038/s41598-022-24809-y.
  • [15] W. Lee and Y.-K. Yoon, “Wireless Power Transfer Systems Using Metamaterials: A Review,” IEEE Access, vol. 8, pp. 147930–147947, 2020, doi: 10.1109/ACCESS.2020.3015176.
  • [16] J. Zhu et al., “Three-dimensional magnetic cloak working from dc to 250 kHz,” Nat. Commun., vol. 6, p. 8931, 2015, doi: 10.1038/ncomms9931.
  • [17] A. Steckiewicz, “High-frequency cylindrical magnetic cloaks with thin layer structure,” J. Magn. Magn. Mater., vol. 534, p. 168039, 2021, doi: 10.1016/j.jmmm.2021.168039.
  • [18] Z. Zhang, B. Zhang, B. Deng, X. Wei, and J. Wang, “Opportunities and challenges of metamaterial-based wireless power transfer for electric vehicles,” Wirel. Power Transf., vol. 5, no. 1, pp. 9–19, 2018, doi: 10.1017/wpt.2017.12.
  • [19] S. Yoon, T. Lim, and Y. Lee, “Multifunctional coil technique for alignment-agnostic and Rx coil size-insensitive efficiency enhancement for wireless power transfer applications,” Sci. Rep., vol. 13, p. 22838, 2023, doi: 10.1038/s41598-023-50094-4.
  • [20] X. Huang, C. Zhang, L. Cong, R. Cai, F. Yang, and C. Lu, “Development and prospects of metamaterial in wireless power transfer,” IET Power Electron., vol. 14, pp. 2423–2440, 2021, doi: /10.1049/pel2.12189.
  • [21] C. Rong, L. Yan, L. Li, Y. Li, and M. Liu, “A Review of Metamaterials in Wireless Power Transfer,” Materials, vol. 16, no. 17, p. 6008, 2023, doi: 10.3390/ma16176008.
  • [22] J. Alberto, U. Reggiani, L. Sandrolini, and H. Albuquerque, “Accurate Calculation of the Power Transfer and Efficiency in Resonator Arrays for Inductive Power Transfer,” PIER B, vol. 83, pp. 61–76, 2019, doi: 10.2528/PIERB18120406.
  • [23] J. Alberto, U. Reggiani, L. Sandrolini, and H. Albuquerque, “Fast Calculation and Analysis of the Equivalent Impedance of a Wireless Power Transfer System Using an Array of Magnetically Coupled Resonators,” PIER B, vol. 80, pp. 101–112, 2018, doi: 10.2528/PIERB18011704.
  • [24] D. Shan, H. Wang, K. Cao, and J. Zhang, “Wireless power transfer system with enhanced efficiency by using frequency reconfigurable metamaterial,” Sci. Rep., vol. 12, 331, pp. 1–11, 2022, doi: 10.1038/s41598-021-03570-8.
  • [25] W. Lee and Y.-K. Yoon, “Tunable metamaterial slab for efficiency improvement in misaligned wireless power transfer,” IEEE Microwave Wirel. Compon. Lett., vol. 30, no. 9, pp. 912–915, 2020, doi: 10.1109/LMWC.2020.3015680.
  • [26] Z. Dai, Z. Fang, H. Huang, Y. He, and J. Wang, “Selective omnidirectional magnetic resonant coupling wireless power transfer with multiple-receiver system,” IEEE Access, vol. 6, pp. 19287–19294, 2018, doi: 10.1109/ACCESS.2018.2809797.
  • [27] C.M. de Miranda and S.F. Pichorim, “A Three-Coil Wireless Power Transfer System using Self-Resonant Open-Bifilar Coils,” Int. J. Electron. Commun., vol. 154, p. 154300, 2022, doi: 10.1016/j.aeue.2022.154300.
  • [28] J.P. Turpin, J.A. Bossard, K.L. Morgan, D.H. Werner, and P.L. Werner, “Reconfigurable and Tunable Metamaterials: A Review of the Theory and Applications,” Int. J. Antennas Propag., vol. 2014, p. 429837, 2014, doi: 10.1155/2014/429837.
  • [29] C. Xu, Z. Ren, J. Wei and C. Lee, “Reconfigurable terahertz metamaterials: From fundamental principles to advanced 6G applications,” iScience, vol. 25, 2022, doi: 10.1016/j.isci.2022.103799.
  • [30] J. Besnoff, M. Chabalko, and D.S. Ricketts, “A Frequency-Selective Zero-Permeability Metamaterial Shield for Reduction of Near-Field Electromagnetic Energy,” IEEE Antennas Wirel. Propag. Lett., vol. 15, no. 1, pp. 654–657, 2015, doi: 10.1109/LAWP.2015.2466172.
  • [31] C. Lu et al., “Shielding the magnetic field of wireless power transfer system using zero-permeability metamaterial,” in Proc. 14th IET International Conference on AC and DC Power Transmission (ACDC 2018), 2018, pp. 1812–1815, doi: 10.1049/joe.2018.8678.
  • [32] C. Lu et al., “Magnetic Shielding of Wireless Power Transfer Using Zero Permeability Metamaterial Slab,” in Proc. IEEE 1st China International Youth Conference on Electrical Engineering (CIYCEE), 2020, pp. 1–5, doi: 10.1109/CIYCEE49808.2020.9332735.
  • [33] SAE International Technical Standard, “Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology,” SAE Standard J2954_202010, revised October 2020, issued May 2016, doi: 10.4271/J2954_202010.
  • [34] H. Chen et al., “A meta-substrate to enhance the bandwidth of metamaterials,” Sci. Rep., vol. 4, p. 5264, 2014, doi: 10.1038/srep05264.
  • [35] S.S. Mohan, M. del Mar Hershenson, S.P. Boyd, and T.H. Lee, “Simple accurate expressions for planar spiral inductances,” IEEE J. Solid-State Circ., vol. 34, no. 10, pp. 1419–1424, 1999, doi: 10.1109/4.792620.
  • [36] J. Liu, Z. Gong, S. Yang, H. Sun, and J. Zhou, “Practical model for metamaterials in wireless power transfer systems,” Appl. Sci., vol. 10, p. 8506, 2020, doi: 10.3390/app10 238506.
  • [37] Laird. “Ferrite Plates for Wireless Charging MP & 33 Series.” [Online]. Available: https://www.laird.com/sites/default/files/mcp-ds-plates-0714.pdf [Accessed: 10 Jan. 2024].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f106afe4-37b2-4022-9a75-e5bc79cfb05c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.