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Abstract

The paper presented here describes a new practical approach to the reconstruction prob-
lem applied to 3D spiral x-ray tomography. The concept we propose is based on a
continuous-to-continuous data model, and the reconstruction problem is formulated as
a shift invariant system. This original reconstruction method is formulated taking into
consideration the statistical properties of signals obtained by the 3D geometry of a CT
scanner. It belongs to the class of nutating reconstruction methods and is based on the
advanced single slice rebinning (ASSR) methodology. The concept shown here signifi-
cantly improves the quality of the images obtained after reconstruction and decreases the
complexity of the reconstruction problem in comparison with other approaches. Com-
puter simulations have been performed, which prove that the reconstruction algorithm
described here does indeed significantly outperforms conventional analytical methods in
the quality of the images obtained.
Keywords: reconstruction algorithm, statistical iterative method, computed tomography

1 Introduction

Even though computed tomography was intro-
duced in clinical practice many years ago, it contin-
ues to be a very attractive field of research. Every
new generation of CT device stimulates the devel-
opment of reconstruction algorithms adapted for the
new scanner design. It can be said that all the most
significant reconstruction algorithms belong to one
of two categories: those methodologies which are
based on a discrete-to-discrete (D-D) data model
and those based on a continuous-to-continuous (C-

C) data model, especially those based on a convolu-
tion and back-projection (FBP) strategy [1, 2]. The
use of algebraic reconstruction algorithms, (i.e. the
algebraic reconstruction technique ART, which be-
longs to the D-D class) in the first historical CT ap-
paratus was presumably because there was no real
alternative at the time. After this "early mistake",
the next generation of CT systems used only re-
construction algorithms based on FBP image pro-
cessing methods. The main reason for this was
the huge size of the matrices which appear in the
algebraic reconstruction problem and the calcula-
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tion complexity of the reconstruction method based
on this methodology that this caused. The ana-
lytical (or transformation) methodology drastically
simplifies the number of calculations needed and
so is more appealing. Although this situation has
changed somewhat, as it has been proven (e.g. [3])
that the frequency of cancerous diseases in patients
who had had a CT scan (at least one year after the
scan) is about 24% higher than in the case of pa-
tients who had not had the scan. Due to the enor-
mous prevalence of CT scans, any actions aimed
at reducing this impact are of fundamental impor-
tance, assuming of course, the continued existence
of this popular, cheap, and effective diagnostic tech-
nique. For these reasons, but also for social and
commercial ones, producers of CT scanners began
a kind of competition to develop methods of reduc-
ing the X-ray dose absorbed by patients. Recently,
some commercial solutions of such systems have
been developed, which perform reconstruction pro-
cessing iteratively to decrease the noise in the im-
ages. The most interesting approach is a model-
based iterative reconstruction (MBIR) [4, 5], where
a statistical model of the measurement signals is de-
rived analytically, and, based on this, an iterative re-
construction algorithm is formulated (see also e.g.
[6, 7]). A crucial part in this approach is played
by the reconstruction problem formulated accord-
ing to a D-D scheme. The reconstruction idea pre-
sented in the above publications is based on the
maximum likelihood (ML) approach and a devel-
opment of this concept - the maximum a posteriori
probability (MAP) estimation approach (the itera-
tive coordinate descent (ICD) algorithm described
comprehensively in [8] implements the MAP ap-
proach). Consequently, in 2013, this development
had its debut under its commercial name Veo -
CT Model-Based Iterative Reconstruction. The ap-
plication of this reconstruction method, however,
presents some significant technical difficulties in its
practical realization, e.g. the difficulty in establish-
ing the coefficients of the forward model for 3D
spiral cone-beam scanners [8, 9]. The huge num-
ber of these coefficients in this model means that
it is impossible to keep all of them in memory at
the same time and the requirement for the simulta-
neous calculation of all voxels in the range of the
reconstructed 3D image makes the reconstruction
problem extremely complex. Although there have
been attempts to decrease the calculation complex-

ity of this approach, as presented, for example, in
the paper [10], they have, as yet, only met with
limited results. Moreover, this system uses a re-
construction problem model that has been shown to
be extremely ill-conditioned [11]. Therefore, there
is still room for improvement in such systems. It
would be much more profitable to construct a statis-
tical reconstruction method which would take into
consideration the statistical conditions of the mea-
surement process and the geometry of the projec-
tions performed, as in the ICD algorithm, thereby
eliminating most of the disadvantages of the D-D
scheme. In previous papers, we have shown how
to formulate the C-C reconstruction problem con-
sistent with the ML methodology for scanners with
parallel geometry [13, 12], for fan-beams [14], and
finally we have proposed a scheme of reconstruc-
tion method for the spiral cone-beam scanner [15].
Our approach has some significant advantages com-
pared with the D-D methodology. Firstly, in our
method, we establish certain coefficients, but this is
performed in a much easier way than in comparable
methods. Secondly, we perform the reconstruction
process in only one plane in 2D space, greatly sim-
plifying the problem. In this way, the reconstruction
process can be performed for every cross-section
image separately. After this, it is possible to recon-
struct the whole 3D volume image from the set of
previously reconstructed 2D images. And finally,
because of the C-C methodology of the reconstruc-
tion process, we can perform most of the computa-
tionally expensive operations in the frequency do-
main (2D convolutions). Because it is a very much
less computationally demanding approach, by using
FFT, we make our reconstruction method indepen-
dent of the dimensions of the reconstructed image,
to an acceptable degree. This approach also out-
performs the D-D method regarding the better con-
dition number at the level of problem formulation
[11]. This makes our method more competitive in
terms of its resistance to the influence of noise and
errors in the forward model, and it opens up a new
perspective for the regularization of the reconstruc-
tion problem. The main motivation for this paper is
to present a feasible, practical solution for 3D spiral
tomographic scanners based on the analytical statis-
tical reconstruction approach mentioned above.
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2 3D Reconstruction Method for
the Spiral CT Scanner

Fundamental for our method, the 2D analytical
approximate reconstruction problem was originally
formulated for measurements from a scanner with
parallel geometry [12, 13]. Because the proposed
approach is strongly associated with the parallel ge-
ometry of the scanner, we preferred to choose for
further consideration a signal processing procedure
from among reconstruction methods related to so-
called rebinning methods. This could be, for exam-
ple, the reconstruction concept involved in the sin-
gle slice rebinning (SSR) method (see e.g. [16, 17])
or based on the principles of the more advanced
approach, i.e. the advanced single slice rebinning
(ASSR) algorithm (see e.g. [18, 19]). Because the
ASSR method was better from a practical point of
view, this latter approach was chosen. In our further
analysis, we will present how we adapt this idea
using our statistical reconstruction concept. The
scheme of the reconstruction procedure we propose
is given in Figure 1.

Figure 1. A general scheme of the image
reconstruction algorithm for the spiral scanner

2.1 The spiral cone-beam scanner

The geometry of the spiral cone-beam scanner
with some trigonometric relationships is shown in
Figures 2, 3 and 4.

Figure 2. A general 3D view of the projection
system

Figure 3. The view in a plane perpendicular to the
axis of rotation

Figure 4. The view in the plane along the axis of
rotation of the measurement system

The measurement system comprises an x-ray
tube and a partially cylindrically shaped screen with
detectors. This assembly rotates around the princi-
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tive coordinate descent (ICD) algorithm described
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tionally expensive operations in the frequency do-
main (2D convolutions). Because it is a very much
less computationally demanding approach, by using
FFT, we make our reconstruction method indepen-
dent of the dimensions of the reconstructed image,
to an acceptable degree. This approach also out-
performs the D-D method regarding the better con-
dition number at the level of problem formulation
[11]. This makes our method more competitive in
terms of its resistance to the influence of noise and
errors in the forward model, and it opens up a new
perspective for the regularization of the reconstruc-
tion problem. The main motivation for this paper is
to present a feasible, practical solution for 3D spiral
tomographic scanners based on the analytical statis-
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pal axis of the system, i.e. the z-axis. At the same
time, the table with the patient moves slowly into
the gantry. This means that the projection system
traces a spiral path around the z-axis. Each pro-
jection measured can be specified by the following
parameters: ph

(
β,αh, ż

)
, where β is the angle be-

tween a particular ray and the axis of symmetry of
the measurement system; αh is the angle between
the axis of symmetry of the measurement system
and the y-axis; ż is the z-coordinate relative to the
current position of the measurement system.

The focus of the tube moves along the z-axis ac-
cording to the following relation (assuming that the
tube starts from z0 = 0 at an angle αh = 0)

z0 = λ
αh

2π
, (1)

where: λ is the table increment per full revolution
of the tube.

Of course, in a real CT device, the reconstruc-
tion algorithm can only make use of projections ob-
tained by a scanner.

Each useful beam reaches an individual detec-
tor, and the measurement is specified by its row
k = 1,2, . . . ,K in the detector array, where K is
an even number of rows placed on the screen, and
its column η = −(H−1)/2, . . . ,0, . . . ,(H−1)/2
in the matrix, where H is an odd number of detec-
tors in each array. Additionally, projections are only
performed at a limited number of angles, each of
which is indexed by the variable θ = 0,1, . . . . This
discretization can be summarized by saying that the
proposed reconstruction algorithm has available to
it the following projections values ph

(
βη,αh

θ, żk
)
.

2.2 Inclination of the reconstruction plane

Before using the algorithm, a doctor needs to
determine the location of the middle of the recon-
structed slice along the z-axis. This position is rep-
resented by a value zp, and is related to the angle αh

p
of rotation of the tube at the moment when the cen-
ter of symmetry of the cone-beam intersects with
the reconstruction plane. This can be calculated ac-
cording to the following equation

αh
p =

2π · zp

λ
. (2)

After calculating the angle of rotation αh
p, it is pos-

sible to determine the angle of inclination γ of the
plane of the slice. The approach presented here
belongs to the class of so-called "nutating" recon-
struction methods (see also [18], [19]), where dif-
ferent reconstruction planes are inclined in differ-
ent ways, at a specific angle for every position. The
main goal of this concept is to adjust the reconstruc-
tion plane to the path of the helical movement of
the tube around table. The optimal inclination an-
gle meets the following condition

γ=−arctan

(
λ · arccos

(1
2 (1+ cos(π))

)

2πR f sin
(
arccos

( 1
2 (1+ cos(π))

))
)
,

(3)
when errors of interpolation will be minimized.

The conceptional view of this operation is illus-
trated by Figure 5.

Figure 5. Location of the reconstructed slice

2.3 Longitudinal approximation

It is crucial for the presented conception to re-
formulate the 3D reconstruction problem in a 2D
problem. Thanks to this it will be possible to per-
form a reconstruction procedure using parallel vir-
tual rays lying in the reconstruction plane. These
virtual parallel rays, which are the projections nec-
essary for the following reconstruction procedure,
are approximated in the ASSR method by projec-
tions established by interpolation of real measure-
ments performed in scanner. This operation is of-
ten called the longitudinal approximation. The po-
sitions of both the ray representing the interpolated
measurement and the desired parallel ray with re-
spect to the reconstruction plane is shown in Fig-
ure 6.
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Figure 6. View presenting an idea of the
longitudinal approximation

In the longitudinal approximation, we firstly
specify all the parameters of the parallel projections
pp

(
sl,α

p
ψ
)

needed for the reconstruction procedure.
We assume that the virtual detectors are equidistant
on a flat screen and fixed at the points sl = l ·∆s,
where l = −L/2− 0.5, . . . ,L/2− 0.5, and L is an
even number of detectors. Every virtual parallel
projection is performed in an equiangular way at
specific angles αp

ψ =ψ ·∆ψ, where ψ= 0, . . . ,Ψ−1,
and Ψ is the number of projections carried out.
Based on the set of values of parameters

(
sl,α

p
ψ
)
,

we can establish the projection angles αh at which
the helical projections should be performed, accord-
ing to the following geometrical relation

αh
lψ = αp

ψ + arcsin
sl

R f
+αh

p. (4)

The following pair of equations allows us to cal-
culate the remaining coordinates of this projection
onto a cylindrically shaped screen

βlψ =−arctan
w

R f +Rd
(5)

and

żlψ =
vR f d√

(R f +Rd)
2 +w2

, (6)

where:

w =
R f +Rd

R f
· sl

cos
(
αh −αh

p −αp
ψ
) (7)

and

v=
R f +Rd

R f

(
sl · cos

(
αh −αh

p
)
· tanγ

cos
(
αh −αh

p −αp
ψ
) −λ

αh −αh
p

2π

)
.

(8)
It is unlikely that any physical ray will be consistent
with the line described by the parameters specified
by (4), (5), and (6). That is why an additional inter-
polation operation is necessary to establish a pro-
jection value ṗh

(
βlψ,αh

lψ, żlψ

)
. This can be done

using trilinear interpolation based on the eight pro-
jections nearest to the desired ray

ph
1,lψ = ph

(
β↑

ηlψ ,α
↑
θlψ

, ż↑klψ

)
;

ph
2,lψ = ph

(
β↓

ηlψ ,α
↑
θlψ

, ż↑klψ

)
;

ph
3,lψ = ph

(
β↑

ηlψ ,α
↓
θlψ

, ż↑klψ

)
;

ph
4,lψ = ph

(
β↓

ηlψ ,α
↓
θlψ

, ż↑klψ

)
;

ph
5,lψ = ph

(
β↑

ηlψ ,α
↑
θlψ

, ż↓klψ

)
;

ph
6,lψ = ph

(
β↓

ηlψ ,α
↑
θlψ

, ż↓klψ

)
;

ph
7,lψ = ph

(
β↑

ηlψ ,α
↓
θlψ

, ż↓klψ

)
;

ph
8,lψ = ph

(
β↓

ηlψ ,α
↓
θlψ

, ż↓klψ

)
,

(9)

where the sign ↓ means the previous, and the sign ↑

the next value of the given parameter of the physi-
cally performed projection, as specified by (4), (5)
or (6).

The trilinear interpolation mentioned above
processes measurements specified by (9) as follows

ṗh
(

βlψ,αh
lψ, żlψ

)
=

8

∑
n=1

cn,lψ ph
n,lψ, (10)

where the coefficients of interpolation cn,lψ can be
established in the following way

cn,lψ =

(
1− |∆β|

∆η

)
·
(

1− |∆θ|
∆θ

)
·
(

1− |∆ż|
∆żk

)
,

(11)
where |∆θ|, |∆θ| and |∆ż| are the differences be-
tween the parameters of one of the chosen projec-
tions ph

n,lψ and the parameters specified by relations
(4), (5) and (6), for dimensions β, αh and ż, respec-
tively.

It is worth noting that the interpolated ray
passes through the various tissues along a path
longer than that of the approximated parallel ray.
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We therefore have to make a correction for this ef-
fect. This correction can be performed by multi-
plying the interpolated projection by the following
factor

(12)

where Equations (7) and (8) still hold true.

To avoid having to transfer the results of the
reconstruction procedure from the local coordi-
nate system of the reconstructed cross-section to
the global coordinate system, the projection values
should be corrected by a second factor, which can
be expressed in the following way

CORR2 =
cosυ√

cos2 αp + cos2 υsin2 αp
ψ

. (13)

Taking all the above considerations together, it is
possible to write the approximated parallel projec-
tion as

pp (sl,α
p
ψ
)
= ṗh

(
βlψ,αh

lψ, żlψ

)
·CORR1 ·CORR2,

(14)
where ṗh

(
βlψ,αh

lψ, żlψ

)
is an interpolated value of

the helical projection specified by relation (10).

After the operations described in this Section,
we have a set of the parallel projections pp

(
sl,α

p
ψ
)

ready to be applied to a reconstruction method de-
signed for this type of scanner geometry.

2.4 Statistical reconstruction procedure

As we already have the parallel projections
prepared, as shown in previous subsections, we
can now apply our original approach to the recon-
struction problem. This approach has been pre-
sented previously in different forms for parallel-
beam [12, 13, 20], fan-beam [14] and cone-beam
[15] scanners.

A rectangle in Figure 1 marks the part of the al-
gorithm that is processed using parallel beams (in
this case, virtual parallel beams). The individual
operations which are included in this fundamental
part of our algorithm are presented below.

2.4.1 Back-projection operation

The first step in this part of our algorithm is a
back-projection operation. This operation can be
written mathematically as

µ̃(i, j) = ∆αh ∑
ψ

ṗp (si j,αp
ψ
)
, (15)

where: si j = i∆s cosαp
ψ + j∆s sinαp

ψ is the coor-
dinate defining the position of point (i, j) on the
screen, during a projection carried out at angle αp

ψ;
∆s = ∆xy is the distance between pixels in the recon-
structed image.

It is necessary to use an interpolation to evaluate
projections at points si j based on the virtual projec-
tions pp

(
sl,α

p
ψ
)
. We can obtain an approximation

of the projection pp
(
sl,α

p
ψ
)

expressed by

ṗp (si j,αp
ψ
)
=

∆s ∑
l

pp (l∆s,αp
ψ
)
· ¯int (si j − l∆s) , (16)

where ¯int (∆s) is an interpolation function.

In the simplest case, linear interpolation can be
used, and the interpolation can be formulated in the
following way

ṗp (si j,αp
ψ
)
=

2

∑
m=1

cm,i j p
p
m,i j, (17)

where coefficients of interpolation cm,lψ can be es-
tablished as follows

cm,i j =

(
1− |∆s|

∆s

)
, (18)

where |∆s| is the difference between parameter si j =
i∆s cosαp

ψ + j∆s sinαp
ψ and one of the chosen pro-

jections pp
m,lψ, which are established as follows

pp
1,lψ = pp

(
∆sl↑,αp

lψ

)
; pp

2,lψ = pp
(

∆sl↓,αp
lψ

)
.

(19)

It is very important at this moment to take
into consideration the statistical nature of the image
µ̃(i, j) obtained as presented above.

Let us start from the statistical nature of the
measurements used in computed tomography by
taking into account the following definition

p ≡ ln
(

I (0)
I

)
= ln

(n0

n

)
, (20)
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where the sign ↓ means the previous, and the sign ↑

the next value of the given parameter of the physi-
cally performed projection, as specified by (4), (5)
or (6).

The trilinear interpolation mentioned above
processes measurements specified by (9) as follows

ṗh
(

βlψ,αh
lψ, żlψ

)
=

8

∑
n=1

cn,lψ ph
n,lψ, (10)

where the coefficients of interpolation cn,lψ can be
established in the following way

cn,lψ =

(
1− |∆β|

∆η

)
·
(

1− |∆θ|
∆θ

)
·
(

1− |∆ż|
∆żk

)
,

(11)
where |∆θ|, |∆θ| and |∆ż| are the differences be-
tween the parameters of one of the chosen projec-
tions ph

n,lψ and the parameters specified by relations
(4), (5) and (6), for dimensions β, αh and ż, respec-
tively.

It is worth noting that the interpolated ray
passes through the various tissues along a path
longer than that of the approximated parallel ray.
We therefore have to make a correction for this ef-
fect. This correction can be performed by multi-
plying the interpolated projection by the following
factor

CORR1 =

=
(R f +Rd)cos

(
αh −αh

p −αp
ψ
)

cosυ√
w2 + v2 +(R f +Rd)

2 ·
√

sin2 αp
ψ + cos2 υsin2 αp

ψ

+

wsin
(
αh −αh

p −αp
ψ
)

cosυ− vsinαp
ψ sinυ√

w2 + v2 +(R f +Rd)
2 ·
√

sin2 αp
ψ + cos2 υsin2 αp

ψ

, (12)
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We therefore have to make a correction for this ef-
fect. This correction can be performed by multi-
plying the interpolated projection by the following
factor

(12)

where Equations (7) and (8) still hold true.

To avoid having to transfer the results of the
reconstruction procedure from the local coordi-
nate system of the reconstructed cross-section to
the global coordinate system, the projection values
should be corrected by a second factor, which can
be expressed in the following way

CORR2 =
cosυ√

cos2 αp + cos2 υsin2 αp
ψ

. (13)

Taking all the above considerations together, it is
possible to write the approximated parallel projec-
tion as

pp (sl,α
p
ψ
)
= ṗh
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)
·CORR1 ·CORR2,

(14)
where ṗh
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this case, virtual parallel beams). The individual
operations which are included in this fundamental
part of our algorithm are presented below.

2.4.1 Back-projection operation

The first step in this part of our algorithm is a
back-projection operation. This operation can be
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It is necessary to use an interpolation to evaluate
projections at points si j based on the virtual projec-
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. We can obtain an approximation

of the projection pp
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ψ
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expressed by
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=

∆s ∑
l

pp (l∆s,αp
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· ¯int (si j − l∆s) , (16)

where ¯int (∆s) is an interpolation function.

In the simplest case, linear interpolation can be
used, and the interpolation can be formulated in the
following way

ṗp (si j,αp
ψ
)
=

2

∑
m=1

cm,i j p
p
m,i j, (17)

where coefficients of interpolation cm,lψ can be es-
tablished as follows

cm,i j =

(
1− |∆s|

∆s

)
, (18)

where |∆s| is the difference between parameter si j =
i∆s cosαp

ψ + j∆s sinαp
ψ and one of the chosen pro-

jections pp
m,lψ, which are established as follows

pp
1,lψ = pp

(
∆sl↑,αp

lψ

)
; pp

2,lψ = pp
(

∆sl↓,αp
lψ

)
.

(19)

It is very important at this moment to take
into consideration the statistical nature of the image
µ̃(i, j) obtained as presented above.

Let us start from the statistical nature of the
measurements used in computed tomography by
taking into account the following definition

p ≡ ln
(

I (0)
I

)
= ln

(n0

n

)
, (20)
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where: I (0) is the initial X-ray intensity (deter-
mined during the calibration of the CT scanner); I is
the X-ray intensity detected after passing through a
body; n0 is the initial photon count; n is the photon
count registered by an X-ray detector.

We can assume that n is the realization of a
Poisson-distributed random variable, i.e. N, with
an expected value n∗.

Next, we assume that P is a random variable
that represents the stochastic nature of the projec-
tion value p established by measurement. Taking
into account the definition (20), we can treat vari-
able P as a function of the random variable N, as
follows

P = ln
(n0

N

)
. (21)

In our case, the projection values p in (20) are rep-
resented physically by ph

(
βγ,αh

θ, żk
)
.

In our further considerations, it will be assumed
that the variances σ2

ηθk of the variances P are esti-

mated by 1
nηθk

= e
ph(βη,αh

θ,żk)
n0

(see e.g. [21]). Bearing
in mind Eqs (10), (13), (12), (17), we can notice that
the random variable representing the virtual paral-
lel projections pp

(
l∆s,αp

ψ
)

is a linear function of
the random variable P. Therefore, it is possible to
estimate the variance in the following way

σ2
i j,ψ

∼=
2

∑
m=1

c2
m,i j·

·CORR2
1,lψ ·CORR2

2,lψ

8

∑
n=1

c2
n,lψ

eph
n,lψ

n0
. (22)

The above considerations describe the statisti-
cal nature of only one interpolated value which is
obtained at a given projection angle αψ. Of course,
it is necessary to take into account all approximated
parallel projections pp

(
si j,αp

ψ
)

used by the back-
projection operation. This means that, bearing in
mind relation (15) the following summation is ob-
tained

µ̃(i, j) = ∆αp ∑
ψ

2

∑
m=1

cm,i j· (23)

·CORR2
1,lψ ·CORR2

2,lψ

8

∑
n=1

cn,lψ ph
n,lψ.

Taking into account the fact that in the statistical
case considered here, an approximate analytical re-

construction problem in the form of a shift invariant
system (see e.g. [12]) involves expected values of
attenuation coefficients, i.e. µ∗ (i, j), we can write
as follows

µ̃∗ (i, j)∼= (∆s)
2 ∑̄

i
∑̄

j

µ∗ (ī, j̄)h∆i,∆ j, (24)

where

h∆i,∆ j = ∆α (25)
Ψ−1

∑
ψ=0

(1−|icosψ∆αp + j sinψ∆αp |) .

Let us assume that all the projections
ṗp

(
si j,αp

ψ
)

from (17) are realizations of the in-
dependent random variables Pi j,ψ, for a specific
pixel (i, j). According to the Lyapunov cen-
tral limit theorem, the distribution of the sum
PΣ (i, j) = ∑Ψ−1

ψ=0 Pi j,ψ converges to that of a normal
random variable, as Ψ goes to infinity. Therefore,
if the number of projections Ψ is sufficiently large
then the random variable PΣ (i, j) tends to the Gaus-
sian distribution function, as follows

fPri j (µ̃(i, j)) =
1√

2πσΣ (i, j)

exp

(
−(µ̃(i, j)− µ̃∗ (i, j))2

2σ2
Σ (i, j)

)
, (26)

where

σΣ (i, j) =
√

σ2
1 (i, j)+σ2

2 (i, j)+ · · ·+σ2
Ψ−1 (i, j),

(27)
where σ2

ψ (i, j) are the variances of the random vari-
ables Pi j,ψ described by (22), and µ̃∗ (i, j) is the ex-
pected value of the random variable PΣ (i, j).

The probability function (26) considers only
one pixel (i, j) in the reconstructed image. It is nec-
essary to extend this function to the function fPr (µ̃),
if all pixels in this image have to be taken into ac-
count, as follows

∧
µ̃

fPr (µ̃) =
I

∏
i=1

I

∏
j=1

fPri j (µ̃(i, j)) . (28)

The probability function expressed by (28) forms
the basis for the formulation of the objective of an
appropriately formulated optimization problem.
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2.4.2 Iterative reconstruction procedure

As was mentioned in sec. 2.4.1, the reconstruc-
tion problem expressed by relation (28) will be used
to reformulate as an optimization problem. It is very
convenient in this case to use the maximum likeli-
hood (ML) method, applying the log form of (28)
as the objective for this strategy, as follows

L1 = ln( fPr (µ̃)) =
I

∑
i=1

I

∑
j=1

(
b− (µ̃(i, j)− µ̃∗ (i, j))2

2σ2
Σ (i, j)

)
, (29)

where σ2
Σ (i, j) is expressed by (27), and constant

b = − ln
(√

2πσΣ (i, j)
)
. Because b is constant, we

neglect this term when using the gradient method
during the optimization procedure, giving the next
form of the objective

L2 =−
I

∑
i=1

I

∑
j=1

(
1

2σ2
Σ (i, j)

(µ̃∗ (i, j)− µ̃(i, j))2
)
.

(30)
The main idea of algorithms based on the maximum
likelihood (ML) method is to estimate the expected
value of the reconstructed image at particular pix-
els (see e.g. [4]). Then, our reconstruction problem
can be formulated as an optimization procedure, as
follows

µmin = argmin
µ

1
2

I

∑
i=1

J

∑
j=1

1
σ2

Σ (i, j)
(e(i, j))2 , (31)

where

e(ī, j̄) = ∑
i

∑
j

µ(i, j) ·h∆i,∆ j − µ̃(ī, j̄) . (32)

Of course, value µ̃ in Eq. (32) represents the image
obtained after the back-projection operation, h∆i,∆ j

are constant coefficients of the shift invariant sys-
tem, and µ represents an estimation of the expected
values of the reconstructed image.

However, results obtained earlier (see e.g. [11])
show that the reconstruction problem (31) is better
conditioned than methods based on the D-D model.
In any case, it needs to be regularized in some way,

often by the introduction of an additional regular-
ization term. This term relates to the maximum a
priori (MAP) estimate framework. This Bayesian
framework can be expressed as follows

µmin = argmin
µ

(33)

a1
1
2

I

∑
i=1

J

∑
j=1

1
σ2

Σ (i, j)
(e(i, j))2 +a2 f (µ) ,

where f (µ) is a regularization term; a1 and a2 are
constant coefficients. The regularization term may
take different forms, for instance, the total variation
(TV) regularization [23].

Therefore, we can postulate that it would be
possible to find the optimal image µ∗, that is the es-
timation of the expected values of the reconstructed
image µ, using the optimization algorithm, as ex-
pressed by (31). In our case, the gradient descent
method was chosen to search for the optimal solu-
tion. The iterative expression based on this strategy
takes the following form

µ(t+1) (i, j) = µ(t) (i, j)−
a1 ∑̄

i
∑̄

j

e(t)
(
xī,y j̄

)
h∆i,∆ ja2 f ′ (µ) , (34)

f ′ (µ) is the derivative of the regularizing function
(for the TV approach see [22]), and

e(t) (ī, j̄) = ∑
i

∑
j

µ∗(t) (i, j) ·h∆i,∆ j − µ̃(ī, j̄) . (35)

In the method presented here, every iteration of
the reconstruction procedure is comprised of two
steps, as described by relations (34) and (35). How-
ever, the convolutions presented in these relations
can be changed into multiplications if it is trans-
formed into the frequency domain. Thanks to this,
the computational complexity is decreased from an
I4 to a log2 I2 problem by using FFT and IFFT al-
gorithms.

3 Experimental Results

In experiments, which were carried out, the
well-known 3D Shepp-Logan mathematical phan-
tom of the head was used (see e.g. [24]). However,
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ever, the convolutions presented in these relations
can be changed into multiplications if it is trans-
formed into the frequency domain. Thanks to this,
the computational complexity is decreased from an
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3 Experimental Results

In experiments, which were carried out, the
well-known 3D Shepp-Logan mathematical phan-
tom of the head was used (see e.g. [24]). However,
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in order to facilitate the calculations, all the val-
ues of the attenuation coefficients used in the model
were divided by a factor of 10−3. Next, the model
modified in this way was used to generate projec-
tions with a Poisson probability distribution. After
that, the pitch (at λ = 2) was determined, and then
those positions on the z axis at which the planes
of the reconstruction intersect the axis were chosen
(zp = 0, zp = −117 and zp = 325). For each posi-
tion zp, the angle γ was calculated according to the
formula (3).

For parallel projections, there was a fixed num-
ber (L = 1024) of virtual detectors on the screen.
The number of parallel views was chosen as Ψ =
1610 per half-rotation, and the size of the processed
image was fixed at I× I = 1024× 1024 pixels. On
the other hand, for spiral cone beam geometry, the
resolution of the measurements performed was de-
fined as follows: ∆θ = π/1609, ∆η = π/3000, ∆k =
0.25.

After that, the back-projection operation can be
performed using the method, which is described in
Section 2.3, and then the iterative reconstruction
procedure, which is explained in Section 2.4.

It is worth underlining that the coefficients
h∆i,∆ j, necessary for the iterative procedure, can be
pre-calculated, i.e. established before the recon-
struction process is started.

Having determined the coefficients h∆i,∆ j, it is
then possible to start the iterative reconstruction
procedure. The image obtained after the back-
projection operation was subjected to a process of
reconstruction using a gradient descent method.

The evaluation of the quality of the recon-
structed image was performed using an error mea-
sure defined as follows

MSE =
1
I2

I

∑
i=1

J

∑
j=1

(
µ(t) (i, j)−µ(i, j)

)2
, (36)

where: µ(t) (i, j) is the reconstructed image after t
iterations and µ(i, j) is the original image of the ar-
tificial 3D Shepp-Logan phantom.

Views of the results obtained, i.e. recon-
structed images of the mathematical phantom in
cross-section after t = 5000 iterations, are presented
in Table 1.C. For comparison, the original phan-

tom images are shown in Table 1.A and images re-
constructed using the traditional ASSR method are
shown in Table 1.B. It is worth noting that the start-
ing point of this iterative reconstruction procedure
can be a reconstructed image using any standard re-
construction method. In our computer simulations,
the traditional ASSR algorithm was used (projec-
tions were convoluted with the Shepp-Logan ker-
nel).

To evaluate the proposed statistical model-
based reconstruction method in real conditions, we
have used measurements obtained on a commer-
cial scanner to conduct the reconstruction proce-
dure presented in this paper, and for comparison,
we have used results obtained using a referential
approach, i.e. the traditional ASSR algorithm. A
comparison of images obtained using the tradi-
tional ASSR method and those using the ASSR
approach with the iterative statistical reconstruc-
tion procedure is presented in Figure 7 (measure-
ments were carried out using a cone-beam heli-
cal scanner: Somatom Definition AS+, Siemens
Healthcare, Forchheim, Germany). Results of the
experiments performed using projections obtained
on the Somatom Definition AS+ scanner, Siemens
Healthcare, Forchheim, Germany, 100 kVp and ef-
fective 200 mAs, 70s after iodinated contrast in-
jection, R f d = 1085.6mm, R f = 595mm, number
of views per rotation Ψ = 1152, number of pix-
els in detector panel 736, detector dimensions were
1.09mm×1.28mm.
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Table 1. View of the images ((C = 1.05 ·10−3, W = 0.1 ·10−3)): original images (c2 = 10−4, β = 10−10)
(A); reconstructed images obtained using the ASSR method (B); reconstructed images obtained using the

statistical iterative procedure proposed in this paper (after 3000 iterations) (C)

zp A B C

0
— MSE = 1.46 ·10−8 MSE = 1.15 ·10−8

-117
— MSE = 6.72 ·10−9 MSE = 6.43 ·10−9

325
— MSE = 5.07 ·10−9 MSE = 4.85 ·10−9
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(A)

(B)

Figure 7. Image reconstructed using a traditional
filtration/back-projection algorithm, i.e. the ASSR

(A); Image reconstructed using the method
proposed in this paper, which is based on the C-C

statistical formulation of the reconstruction
problem and on the ASSR method (after 10000

iterations)

Conclusion

In this paper, it has been proven that the pro-
posed practical statistical approach can be applied
to a spiral scanner. Simulations have shown, that
this reconstruction method is very fast (thanks to

the use of FFT algorithms) and gives satisfactory
results with suppressed noise. Thanks to the use of
the C-C model in the proposed approach, it is pos-
sible to avoid the very serious drawbacks present in
reconstruction approaches utilizing the D-D model.
These are particularly noticeable in reconstruction
algorithms for spiral scanners. First of all, the
computational complexity for 2D reconstruction
geometry (e.g. parallel rays) is proportional to
I2Ψ × N for each iteration, for approaches based
on the D-D model. Our original approach only
needs approximately 4I2 log2 (2I) operations. For
the 3D reconstruction problem these proportions
change to I2 × numbers_o f _reconstructed_cross-
sections × Ψ × N, while our approach still only
requires 4I2 log2 (2I) i.e. there is no increase.
It is worth noting that in both algorithms, back-
projection is performed. Of course, the number of
iterations which need to be performed to produce an
image of satisfactory quality is greater than in the
traditional ASSR algorithm. This means that our
method is more computationally demanding than
the traditional equivalent. Note, however, that if
we consider an image of 1024 × 1024 pixels and
a suitable value of Ψ = 1069 we have to perform
about 10000 iterations. Moreover, elements of the
model matrix h∆i,∆ j can be pre-calculated before
the reconstruction procedure is started, and these
are the same for all pixels of the reconstructed im-
age. The images of the cross-sections of the math-
ematical phantom investigated were reconstructed
with high accuracy when compared with the stan-
dard ASSR method. This was measured objectively
using a quality measure which takes into consider-
ation the statistical nature of the projections.
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(A); Image reconstructed using the method
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problem and on the ASSR method (after 10000
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Conclusion

In this paper, it has been proven that the pro-
posed practical statistical approach can be applied
to a spiral scanner. Simulations have shown, that
this reconstruction method is very fast (thanks to

the use of FFT algorithms) and gives satisfactory
results with suppressed noise. Thanks to the use of
the C-C model in the proposed approach, it is pos-
sible to avoid the very serious drawbacks present in
reconstruction approaches utilizing the D-D model.
These are particularly noticeable in reconstruction
algorithms for spiral scanners. First of all, the
computational complexity for 2D reconstruction
geometry (e.g. parallel rays) is proportional to
I2Ψ × N for each iteration, for approaches based
on the D-D model. Our original approach only
needs approximately 4I2 log2 (2I) operations. For
the 3D reconstruction problem these proportions
change to I2 × numbers_o f _reconstructed_cross-
sections × Ψ × N, while our approach still only
requires 4I2 log2 (2I) i.e. there is no increase.
It is worth noting that in both algorithms, back-
projection is performed. Of course, the number of
iterations which need to be performed to produce an
image of satisfactory quality is greater than in the
traditional ASSR algorithm. This means that our
method is more computationally demanding than
the traditional equivalent. Note, however, that if
we consider an image of 1024 × 1024 pixels and
a suitable value of Ψ = 1069 we have to perform
about 10000 iterations. Moreover, elements of the
model matrix h∆i,∆ j can be pre-calculated before
the reconstruction procedure is started, and these
are the same for all pixels of the reconstructed im-
age. The images of the cross-sections of the math-
ematical phantom investigated were reconstructed
with high accuracy when compared with the stan-
dard ASSR method. This was measured objectively
using a quality measure which takes into consider-
ation the statistical nature of the projections.
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