PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rheological performance of Portland cement pastes containing different fineness of circulating fluidized bed combustion ashes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Circulating fluidized bed combustion (CFBC) ash, a by-product of fluidized bed coal-fired sulfur fixation technology, presents an opportunity for recycling and reuse when employed as a supplementary cementitious material in cement composite systems, thereby alleviating environmental pressure. Meanwhile, the rheological characteristics of cement pastes are crucial for optimizing its workability, facilitating diverse engineering applications such as pumping, formwork pressure calculation, and 3D printing. Against this backdrop, this study systematically explores the impact of CFBC ash, varying in particle size and content, on the rheological properties of Portland cement (PC) paste. Findings reveal that elevated CFBC content correlates with heightened yield stress and viscosity of the paste, with the paste incorporating 40% CFBC ash having the highest yield stress of 71.6 Pa. Furthermore, incorporating CFBC with finer particle size distribution amplifies these rheological parameters. Thixotropy mirrors the alterations in dynamic yield stress and viscosity, indicating that CFBC ash addition enhances paste thixotropy. In PC-CFBC ash composites, G' values consistently surpass G'', suggesting early-stage elasticity during oscillation testing. Thixotropy in PC-CFBC ash composites is intricately linked to superplasticizer adsorption capacity, while viscoelastic evolution of the paste is governed by hydration kinetics.
Rocznik
Strony
203--223
Opis fizyczny
Bibliogr. 58 poz., il., tab.
Twórcy
autor
  • Changzhi Vocational and Technical College, Changzhi, China
Bibliografia
  • [1] W.T. Lin, K.L. Lin, K. Chen, K. Korniejenko, M. Hebda, and M. Łach, “Circulation fluidized bed combustion fly ash as partial replacement of fine aggregates in roller compacted concrete”, Materials, vol. 12, no. 24, art. no. 4204, 2019, doi: 10.3390/ma12244204.
  • [2] Y. Peng and C. Unluer, “Modeling the mechanical properties of recycled aggregate concrete using hybrid machine learning algorithms”, Resources, Conservation and Recycling, vol. 190, art. no. 106812, 2023, doi: 10.1016/j.resconrec.2022.106812.
  • [3] J. Shi, Y. Liu, H. Xu, Y. Peng, Q. Yuan, and J. Gao, “The roles of cenosphere in ultra-lightweight foamed geopolymer concrete (UFGC)”, Ceramics International, vol. 48, no. 9, pp. 12884-12896, 2022, doi: 10.1016/j.ceramint.2022.01.161.
  • [4] Y. Nie, J. Shi, Z. He, B. Zhang, Y. Peng, and J. Lu, “Evaluation of high-volume fly ash (HVFA) concrete modified by metakaolin: Technical, economic and environmental analysis”, Powder Technology, vol. 397, art. no. 117121, 2022, doi: 10.1016/j.powtec.2022.117121.
  • [5] J. Havlica, J. Brandstetr, and I. Odler, “Possibilities of utilizing solid residues from pressured fluidized bed coal combustion (PSBC) for the production of blended cements”, Cement and Concrete Research, vol. 28, no. 2, pp. 299-307, 1998, doi: 10.1016/S0008-8846(97)00258-5.
  • [6] Y.H. Kang and Y.C. Choi, “Development of non-sintered zero-OPC binders using circulating fluidized bed combustion ash”, Construction and Building Materials, vol. 178, pp. 562-573, 2018, doi: 10.1016/j.conbuildmat.2018.05.184.
  • [7] H.K. Lee, S.M. Jeon, B.Y. Lee, and H.K. Kim, “Use of circulating fluidized bed combustion bottom ash as a secondary activator in high-volume slag cement”, Construction and Building Materials, vol. 234, art. no. 117240, 2020, doi: 10.1016/j.conbuildmat.2019.117240.
  • [8] X. Xun, F. Xiaoling, and Y. Chenglin, “Investigation on physical properties, strength and phase evolution of binary cementitious materials made of CFBC ash and lime”, Construction and Building Materials, vol. 265, art. no. 120302, 2020, doi: 10.1016/j.conbuildmat.2020.120302.
  • [9] J. Lee, T. Lee, S. Lee, and H. Choi, “Performance Evaluation of Cementless Composites with Alkali-Sulfate Activator for Field Application”, Materials, vol. 13, no. 23, art. no. 5410, 2020, doi: 10.3390/ma13235410.
  • [10] K. Chen, W.T. Lin, and W. Liu, “Microstructures and mechanical properties of sodium-silicate-activated slag/co-fired fly ash cementless composites”, Journal of Cleaner Production, vol. 277, art. no. 124025, 2020, doi: 10.1016/j.jclepro.2020.124025.
  • [11] M. Niu, C. Liu, X. Wang, Y. Huang, L. Dong, L. Duan, L. Xu, Y. Wang, C. Sun, and H. Liu, “Chemical Characteristics of Ash Formed from the Combustion of Shoe Manufacturing Waste in a 2.5 MWth Circulating Fluidized Bed Combustor”, Waste and Biomass Valorization, vol. 11, pp. 4551-4560, 2020, doi: 10.1007/s12649-019-00733-7.
  • [12] D. Carro-López, B. González-Fonteboa, J. Eiras-López, and S. Seara-Paz, “Comparing circulating fluidised bed fly ash and limestone as additions for cement”, Magazine of Concrete Research, vol. 71, no. 24, pp. 1302-1311, 2019, doi: 10.1680/jmacr.18.00490.
  • [13] G. Sheng, Q. Li, and J. Zhai, “Investigation on the hydration of CFBC fly ash”, Fuel, vol. 98, pp. 61-66, 2012, doi: 10.1016/j.fuel.2012.02.008.
  • [14] K. Ohenoja, J. Pesonen, J. Yliniemi, and M. Illikainen, “Utilization of fly ashes from fluidized bed combustion: A review”, Sustainability, vol. 12, no. 7, art. no. 2988, 2020, doi: 10.3390/su12072988.
  • [15] S. Siddique and J.G. Jang, “Effect of CFBC ash as partial replacement of PCC ash in alkali-activated material”, Construction and Building Materials, vol. 244, art. no. 118383, 2020, doi: 10.1016/j.conbuildmat.2020.118383.
  • [16] R. Wu, S. Dai, S. Jian, J. Huang, Y. Lv, B. Li, and N. Azizbek, “Utilization of the circulating fluidized bed combustion ash in autoclaved aerated concrete: Effect of superplasticizer”, Construction and Building Materials, vol. 237, art. no. 117644, 2020, doi: 10.1016/j.conbuildmat.2019.117644.
  • [17] C. Wang, L. Jia, Y. Tan, and E.J. Anthony, “Carbonation of fly ash in oxy-fuel CFB combustion”, in Challenges of Power Engineering and Environment: Proceedings of the International Conference on Power Engineering 2007. Berlin Heidelberg: Springer, 2007, pp. 799-804.
  • [18] H.S. Djayaprabha, T.P. Chang, J.Y. Shih, and H.A. Nguyen, “Improving the mechanical and durability performance of No-cement self-compacting concrete by fly ash”, Journal of Materials in Civil Engineering, vol. 32, no. 9, art. no. 04020245, 2020, doi: 10.1061/(ASCE)MT.1943-5533.0003281.
  • [19] X. Fu, Q. Li, J. Zhai, G. Sheng, and F. Li, “The physical-chemical characterization of mechanicallytreated CFBC fly ash”, Cement and Concrete Composites, vol. 30, no. 3, pp. 220-226, 2008, doi: 10.1016/j.cemconcomp.2007.08.006.
  • [20] T. Wu, M. Chi, and R. Huang, “Characteristics of CFBC fly ash and properties of cement-based composites with CFBC fly ash and coal-fired fly ash”, Construction and Building Materials, vol. 66, pp. 172-180, 2014, doi: 10.1016/j.conbuildmat.2014.05.057.
  • [21] G. Sheng, Q. Li, J. Zhai, and F. Li, “Self-cementitious properties of fly ashes from CFBC boilers co-firing coal and high-sulphur petroleum coke”, Cement and Concrete Research, vol. 37, no. 6, pp. 871-876, 2007, doi: 10.1016/j.cemconres.2007.03.013.
  • [22] Y. Shen, J. Qian, and Z. Zhang, “Investigations of anhydrite in CFBC fly ash as cement retarders”, Construction and Building Materials, vol. 40, pp. 672-678, 2013, doi: 10.1016/j.conbuildmat.2012.11.056.
  • [23] X. Xun, H. Zongyue, D. Liling, Z. Yudong, X. Yulong, and L. Weichao, “Investigation of high volume of CFBC ash on performance of basic magnesium sulfate cement”, Journal of Environmental Management, vol. 256, art. no. 109878, 2020, doi: 10.1016/j.jenvman.2019.109878.
  • [24] H. Xu, Q. Li, L. Shen, W. Wang, and J. Zhai, “Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes”, Journal of Hazardous Materials, vol. 175, no. 1-3, pp. 198-204, 2010, doi: 10.1016/j.jhazmat.2009.09.149.
  • [25] Y. Xia, Y. Yan, and Z. Hu, “Utilization of circulating fluidized bed fly ash in preparing non-autoclaved aerated concrete production”, Construction and Building Materials, vol. 47, pp. 1461-1467, 2013, doi: 10.1016/j.conbuildmat.2013.06.033.
  • [26] Z. Zhang, J. Qian, C. You, and C. Hu, “Use of circulating fluidized bed combustion fly ash and slag in autoclaved brick”, Construction and Building Materials, vol. 35, pp. 109-116, 2012, doi: 10.1016/j.conbuildmat.2012.03.006.
  • [27] B.Y. Lee, S.M. Jeon, C.G. Cho, and H.K. Kim, “Evaluation of time to shrinkage-induced crack initiation in OPC and slag cement matrices incorporating circulating fluidized bed combustion bottom ash”, Construction and Building Materials, vol. 257, art. no. 119507, 2020, doi: 10.1016/j.conbuildmat.2020.119507.
  • [28] N.T. Dung, T.P. Chang, C.T. Chen, and T.R. Yang, “Cementitious properties and microstructure of an innovative slag eco-binder”, Materials and Structures, vol. 49, pp. 2009-2024, 2016, doi: 10.1617/s11527-015-0630-6.
  • [29] A. Machowska, Z. Kledyński, I. Wilińska, and B. Pacewska, “A study of the early hydration processes and properties of fly ash-slag binders”, Bulletin of Materials Science, vol. 42, pp. 1-10, 2019, doi: 10.1007/s12034-019-1886-1.
  • [30] N.T. Dung, T.P. Chang, and C.T. Chen, “Circulating fluidized bed combustion fly ash-activated slag concrete as novel construction material”, ACI Materials Journal, vol. 112, pp. 105-114, 2015, doi: 10.14359/51686910.
  • [31] N.T. Dung, T.P. Chang, and C.T. Chen, “Engineering and sulfate resistance properties of slag-CFBC fly ash paste and mortar”, Construction and Building Materials, vol. 63, pp. 40-48, 2014, doi: 10.1016/j.conbuildmat.2014.04.009.
  • [32] H.J. Kim, M. Tafesse, H.K. Lee, and H.K. Kim, “Incorporation of CFBC ash in sodium silicate-activated slag system: Modification of microstructures and its effect on shrinkage”, Cement and Concrete Research, vol. 123, art. no. 105771, 2019, doi: 10.1016/j.cemconres.2019.05.016.
  • [33] H.A. Nguyen, T.P. Chang, and J.Y. Shih, “Effects of sulfate rich solid waste activator on engineering properties and durability of modified high volume fly ash cement based SCC”, Journal of Building Engineering, vol. 20, pp. 123-129, 2018, doi: 10.1016/j.jobe.2018.07.010.
  • [34] Z. Cheng, L. He, L. Liu, Z. Cheng, X. Pei, and Z. Ma, “Mechanical Properties and Durability of High-Performance Concretes Blended with Circulating Fluidized Bed Combustion Ash and Slag as Replacement for Ordinary Portland Cement”, Advances in Materials Science and Engineering, vol. 2020, art. no. 8613106, 2020, doi: 10.1155/2020/8613106.
  • [35] S.M. Park, J.H. Seo, and H.K. Lee, “Binder chemistry of sodium carbonate-activated CFBC fly ash”, Materials and Structures, vol. 51, pp. 1-10, 2018, doi: 10.1617/s11527-018-1183-2.
  • [36] J.G. Jang, S.M. Park, S. Chung, J.W. Ahn, and H.K. Kim, “Utilization of circulating fluidized bed combustion ash in producing controlled low-strength materials with cement or sodium carbonate as activator”, Construction and Building Materials, vol. 159, pp. 642-651, 2018, doi: 10.1016/j.conbuildmat.2017.08.158.
  • [37] S.M. Park, N.K. Lee, and H.K. Lee, “Circulating fluidized bed combustion ash as controlled low-strength material (CLSM) by alkaline activation”, Construction and Building Materials, vol. 156, pp. 728-738, 2017, doi: 10.1016/j.conbuildmat.2017.09.001.
  • [38] Y. Peng, K. Ma, G. Long, Y. Xie, L. Yu, and Q. Xie, “Effect of packing density according to CPM on the rheology of cement–fly ash-slag paste”, Journal of Materials in Civil Engineering, vol. 33, no. 8, art. no. 04021209, 2021, doi: 10.1061/(ASCE)MT.1943-5533.0003823.
  • [39] S. Nazar, J. Yang, B.S. Thomas, I. Azim, and S.K.U. Rehman, “Rheological properties of cementitious composites with and without nano-materials: A comprehensive review”, Journal of Cleaner Production, vol. 272, art. no. 122701, 2020, doi: 10.1016/j.jclepro.2020.122701.
  • [40] Y. Peng and C. Unluer, “Development of alternative cementitious binders for 3D printing applications: A critical review of progress, advantages and challenges”, Composites Part B: Engineering, vol. 252, art. no. 110492, 2023, doi: 10.1016/j.compositesb.2022.110492.
  • [41] S. Paritala, K.K. Singaram, I. Bathina, M.A. Khan, and S.K.R. Jyosyula, “Rheology and pumpability of mix suitable for extrusion-based concrete 3D printing – A review”, Construction and Building Materials, vol. 402, art. no. 132962, 2023, doi: 10.1016/j.conbuildmat.2023.132962.
  • [42] Y. Peng and C. Unluer, “Advances in rheological measurement and characterization of fresh cement pastes”, Powder Technology, vol. 429, art. no. 118903, 2023, doi: 10.1016/j.powtec.2023.118903.
  • [43] L. Guan, X. Liu, and X. Liu, “Effect of hydroxypropyl methyl cellulose on rheological properties of cementlimestone paste”, Archives of Civil Engineering, vol. 69, no. 1, pp. 593-612, 2023, doi: 10.24425/ace.2023.144190.
  • [44] J.T. Kolawole, R. Combrinck, and W.P. Boshoff, “Shear rheo-viscoelasticity approach to the plastic cracking of early-age concrete”, Cement and Concrete Research, vol. 135, art. no. 106127, 2020, doi: 10.1016/j.cemconres.2020.106127.
  • [45] Y. Zhang, X. Kong, L. Gao, Z. Lu, S. Zhou, B. Dong, and F. Xing, “In-situ measurement of viscoelastic properties of fresh cement paste by a microrheology analyzer”, Cement and Concrete Research, vol. 79, pp. 291-300, 2016, doi: 10.1016/j.cemconres.2015.09.020.
  • [46] Y. Peng and C. Unluer, “Investigation of the viscoelastic evolution of reactive magnesia cement pastes with accelerated hydration mechanisms”, Cement and Concrete Composites, vol. 142, art. no. 105191, 2023, doi: 10.1016/j.cemconcomp.2023.105191.
  • [47] J.T. Kolawole, R. Combrinck, and W.P. Boshoff, “Rheo-viscoelastic behaviour of fresh cement-based materials: Cement paste, mortar and concrete”, Construction and Building Materials, vol. 248, art. no. 118667, 2020, doi: 10.1016/j.conbuildmat.2020.118667.
  • [48] Y. Qian, K. Lesage, K. El Cheikh, and G. De Schutter, “Effect of polycarboxylate ether superplasticizer (PCE) on dynamic yield stress, thixotropy and flocculation state of fresh cement pastes in consideration of the Critical Micelle Concentration (CMC)”, Cement and Concrete Research, vol. 107, pp. 75-84, 2018, doi: 10.1016/j.cemconres.2018.02.019.
  • [49] Y. Peng, K. Ma, G. Long, and Y. Xie, “Influence of nano-SiO2, nano-CaCO3 and nano-Al2O3 on rheological properties of cement–fly ash paste”, Materials, vol. 12, no. 16, art. no. 2598, 2019, doi: 10.3390/ma12162598.
  • [50] T. Huang, Q. Yuan, F. He, and Y. Xie, “Understanding the mechanisms behind the time-dependent viscoelasticity of fresh C3A-gypsum paste”, Cement and Concrete Research, vol. 133, art. no. 106084, 2020, doi: 10.1016/j.cemconres.2020.106084.
  • [51] Z. Xue, D. Gan, Y. Zhang, and Z. Liu, “Rheological behavior of ultrafine-tailings cemented paste backfill in high-temperature mining conditions”, Construction and Building Materials, vol. 253, art. no. 119212, 2020, doi: 10.1016/j.conbuildmat.2020.119212.
  • [52] M. Chen, L. Yang, Y. Zheng, Y. Huang, L. Li, P. Zhao, S. Wang, L. Lu, and X. Cheng, “Yield stress and thixotropy control of 3D-printed calcium sulfoaluminate cement composites with metakaolin related to structural build-up”, Construction and Building Materials, vol. 252, art. no. 119090, 2020, doi: 10.1016/j.conbuildmat.2020.119090.
  • [53] Y. Qian and G. De Schutter, “Enhancing thixotropy of fresh cement pastes with nanoclay in presence of polycarboxylate ether superplasticizer (PCE)”, Cement and Concrete Research, vol. 111, pp. 15-22, 2018, doi: 10.1016/j.cemconres.2018.06.013.
  • [54] L. Liu, P. Yang, C. Qi, B. Zhang, L. Guo, and K.I. Song, “An experimental study on the early-age hydration kinetics of cemented paste backfill”, Construction and Building Materials, vol. 212, pp. 283-294, 2019, doi: 10.1016/j.conbuildmat.2019.03.322.
  • [55] L. Zhou, M. Gou, and X. Guan, “Hydration kinetics of cement-calcined activated bauxite tailings composite binder”, Construction and Building Materials, vol. 301, art. no. 124296, 2021, doi: 10.1016/j.conbuildmat.2021.124296.
  • [56] B. Zhaidarbek, A. Tleubek, G. Berdibek, and Y. Wang, “Analytical predictions of concrete pumping: Extending the Khatib-Khayat model to Herschel-Bulkley and modified Bingham fluids”, Cement and Concrete Research, vol. 163, art. no. 107035, 2023, doi: 10.1016/j.cemconres.2022.107035.
  • [57] Y. Zhang and X. Kong, “Correlations of the dispersing capability of NSF and PCE types of superplasticizer and their impacts on cement hydration with the adsorption in fresh cement pastes”, Cement and Concrete Research, vol. 69, pp. 1-9, 2015, doi: 10.1016/j.cemconres.2014.11.009.
  • [58] J. Plank, B. Sachsenhauser, and J. De Reese, “Experimental determination of the thermodynamic parameters affecting the adsorption behaviour and dispersion effectiveness of PCE superplasticizers”, Cement and Concrete Research, vol. 40, no. 5, pp. 699-709, 2010, doi: 10.1016/j.cemconres.2009.12.002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f10525e7-346d-41e0-b1a1-fa89a3b4a53d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.