PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The microstructure and selected properties of titanium-hydroxyapatite composites obtained by spark plasma sintering (SPS method)

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Mikrostruktura i wybrane właściwości kompozytów tytan-hydroksyapatyt otrzymywanych metodą iskrowego spiekania plazmowego (metoda SPS)
Języki publikacji
EN
Abstrakty
EN
Titanium implants are characterized by improved mechanical properties compared to human bones, that might lead to overtaking the whole load from the bone, which is conducive to bone resorption. One of the proposals to solve this problem is the use of composite materials based on a titanium matrix or titanium alloy matrix with an addition of hydroxyapatite (HAp) ceramics. The introduction of HAp to the metallic material contributes to improvement in biocompatibility and allows for integration of the implant with bone tissue. The focus of this study is on examining metallic-ceramic composites based on a titanium matrix or titanium alloy matrix with an addition of hydroxyapatite ceramics HAp (Ca10(PO4)6(OH)2) ranging from 20 to 40 wt.%, obtained by means of the spark plasma sintering method in the atmosphere of shield gas (argon), at the sintering temperature of 1000°C in SPS HP 5 equipment (manufactured by FCT). The samples were sintered for 25 minutes at the compaction pressure of 35 MPa. The composites were evaluated by means of structural analysis in microstructural examinations with an optical microscope, Neophot 32, and X-ray quality analysis using an X-ray diffractometer (Seifert 3003 T-T) and the following parameters: supply voltage –30 kV, current intensity –40 mA, measurement step 0.1º, integration time 10 s, characteristic radiation wavelength λCo = 1.790 nm. The hydrostatic weighing method in deionized water according to standard PN EN ISO 2738: 2001 was used to measure the density, porosity and water absorption. The surface profile of the biocomposites was determined using a Hommel T1000 roughness tester. The roughness parameters were measured in contact with the examined surface by coupling the stylus with a differential measurement system. The mechanical properties (hardness) of the metallic-ceramic composites based on a titanium matrix or titanium alloy matrix with an addition of hydroxyapatite ceramics HAp were evaluated. The aim of the study was to determine the usefulness of the SPS (Spark Plasma Sintering) method for manufacturing metallic-ceramic composites for medical applications.
PL
Implanty tytanowe charakteryzują się wysokimi w porównaniu z kośćmi właściwościami mechanicznymi, może to prowadzić do przejęcia całości obciążeń, sprzyjając tym samym resorpcji kości. Jedną z propozycji rozwiązania tego problemu są materiały kompozytowe na osnowie tytanu i stopu tytanu z dodatkiem ceramiki hydroksyapatytowej. Wprowadzenie cząsteczek HAp do materiału metalicznego przyczynia się do zwiększenia biozgodności, jak również umożliwia tworzenie wiązań pomiędzy implantem a tkanką kostną. Przedmiotem badań przedstawionych w niniejszym artykule są kompozyty metaliczno"ceramiczne na osnowie tytanu lub stopu tytanu z dodatkiem ceramiki hydroksyapatytowej HAp (Ca10 (PO4)6(OH)2) od 20 do 40% wagowych otrzymane metodą iskrowego spiekania plazmowego (spark plasma sintering) w atmosferze gazu ochronnego argonu w temperaturze spiekania 1000ºC w urządzeniu typu SPS HP 5 firmy FCT. Próbki były spiekane przez czas 25 min przy ciśnieniu prasowania 35 MPa. Kompozyty poddano analizie strukturalnej, badając ich mikrostrukturę przy użyciu mikroskopu optycznego Neophot 32, oraz rentgenowskiej analizie jakościowej, stosując dyfraktometr rentgenowski Seifert 3003 T"T przy następujących parametrach: napięcie zasilające –30 kV, natężenie prądu –40 mA, krok pomiarowy 0,1º, czas zliczania 10 s, długość fali promieniowania charakterystycznego λCo = 1,790 nm. Oceniono gęstość, porowatość oraz nasiąkliwość otrzymanych kompozytów metodą ważenia hydrostatycznego w wodzie dejonizowanej, zgodnie z normą PN EN ISO 2738: 2001. Określono ponadto topografię powierzchni biokompozytów, stosując do tego celu profilometr Hommel T1000. Wyznaczenie parametrów chropowatości powierzchni wykonano w kontakcie z badaną powierzchnią przez sprzężenie igły z różnicowym układem pomiarowym. Oceniono właściwości mechaniczne (mikrotwardość) otrzymanych kompozytów metaliczno-ceramiczne na osnowie tytanu lub stopu tytanu z dodatkiem ceramiki hydroksyapatytowej HAp. Celem badań było określenie przydatności metody iskrowego spiekania plazmowego (spark plasma sintering) do wytwarzania kompozytów metaliczno-ceramicznych do zastosowań medycznych.
Rocznik
Strony
208--213
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
autor
  • Czestochowa University of Technology, Faculty of Processing and Material Engineering and Applied Physics Institute of Material Engineering, al. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Czestochowa University of Technology, Faculty of Processing and Material Engineering and Applied Physics Institute of Material Engineering, al. Armii Krajowej 19, 42-200 Częstochowa, Poland
Bibliografia
  • [1] Kim Y.H., Koak J.Y., Chang I.T., Wennerberg A., Heo S.J., A histomorphometric analysis of the effects of various surface treatment methods on osseointegration. Int. J. Oral. Maxillofac. Implants 2003, 18, 349-356.
  • [2] Thian E.S., Loh N.M., Khor K.A., Tor S.B., Ti6Al4V/HAp composite feedstock for injection molding, Materials Letters 2002, 56, 522-532.
  • [3] Dudek A., Kształtowanie własności użytkowych biomateriałów metalicznych i ceramicznych, Wyd. Politechniki Częstochowskiej, Częstochowa 2010.
  • [4] Mondal D., Nguyen L., Oh I.-H., Lee B.-T., Microstructure and biocompatibility of composite biomaterials fabricated from titanium and tricalcium phosphate by spark plasma sintering, J. Biomed. Mater. Res. 2013, Part A, 101A, 1489-1501.
  • [5] Klimas M., Dudek A., Method of obtaining metallic-ceramic composites of Ti + HAp and its effect on structural properties, Engineering of Biomaterials 2012, 15, 116-117, 48-51.
  • [6] Anawati, Tanigawa H., Asoh H., Ohno T., Kubota M., Ono S., Electrochemical corrosion and bioactivity of titanium hydroxyapatite composites prepared by spark plasmasintering, Corosion Science 2013, 70, 212-220.
  • [7] Garbiec D., Rybak T., Heyduk F., Janczak M., Nowoczesne urządzenie do iskrowego spiekania plazmowego proszków SPS HP D 25 w Instytucie Obróbki Plastycznej, Obróbka Plastyczna Metali 2011, t. XXII, 3.
  • [8] Nygren M., Shen Z., On the preparation of bio-, nano- and structural ceramics and composites by spark plasma sintering, Solid State Sciences 2003, 5, 125-131.
  • [9] Nishimura T., Mitomo M., Hirotsuru H., Kawahara M., Fabrication of silicon nitride nano-ceramics by spark plasma sintering, Journal of Materials Science Letters 1995, 1046-1047.
  • [10] A., Oleszak D., Rosiński M., Nanokrystaliczne kompozyty NiAl-TiC spiekane metodą impulsowo-plazmową, Inżynieria Materiałowa 2004, 5(142), 820-823.
  • [11] Michalski A., Rosiński M., Metoda impulsowo-plazmowego spiekania: podstawy i zastosowanie, Inżynieria Materiałowa 2010, t. XXXI, 1, 7-11.
  • [12] http://www.ios.krakow.pl/282,a,spiekanie-metoda-sps.htm - marzec 2013.
  • [13] Garbiec D., Rybak T., Heyduk F., Spiekanie tytanu i hydroksyapatytu metodą iskrowego spiekania plazmowego, Hutnik-Wiadomości Hutnicze 2012, 8, 569-574.
  • [14] Dobedoe R.S., West G.D., Lewis M.H., Spark plasma sintering of ceramics, Bulletin of the European Ceramic Society 2003, 1, 19-24.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1021891-57a3-478b-a581-866f10f2578d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.