Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The use of foam fractionation followed by aqueous two-phase extraction has emerged as a potential alternative to traditional liquid chromatography, hitherto irreplaceable in the purification of phycobiliproteins. The crude extracts of C-phycocyanin and allophycocyanin were obtained after Thermosynechococcus PCC 6715 biomass disintegration. The FF process with air flow of 2.4 L·h -1 resulted in purification factors up to 1.47 and partitioning coefficients of about 39, and did not require the addition of surfactants. A temperature of 35˚C allowed for the highest partitioning coefficient of 67.6 and yield of 76%; however, the purity of C-PC in condensate at this temperature was lower than at 25˚C. ATPE was tested in 20 different systems consisting of polyethylene glycol and phosphate or citrate salts, of which PEG1500-citrate gave the highest purification factor value of 2.31. Conversely, a partitioning coefficient of 2416 and 1094 were obtained for the PEG1500-phosphate and PEG3000-phosphate systems, respectively. Interestingly, the use of FF condensate in subsequent ATPE step resulted, for the first time, in the separation of the polymer phase into two fractions, one contained C-phycocyanin and the other allophycocyanin. It can be concluded that the use of a two-step system of FF and ATPE is a viable way to separate phycobiliproteins.
Rocznik
Tom
Strony
art. no. e62
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Wolczanska 213, 93-005 Lodz, Poland
autor
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Wolczanska 213, 93-005 Lodz, Poland
autor
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Wolczanska 213, 93-005 Lodz, Poland
Bibliografia
- 1. Antecka A., Klepacz-Smółka A., Szeląg R., Pietrzyk D., Ledakowicz S., 2022. Comparison of three methods for thermostable C–phycocyanin separation and purification. Chem. Eng. Process. Process Intensif., 171, 108563. DOI: 10.1016/j.cep.2021.108563.
- 2. Bennett A., Bogobad L., 1973. Complementary chromatic adaptation in a filamentous blue-green alga. J. Cell Biol., 58, 419–435. DOI: 10.1083/jcb.58.2.419.
- 3. Blatkiewicz M., Antecka A., Boruta T., Górak A., Ledakowicz S., 2018. Partitioning of laccases derived from Cerrena unicolor and Pleurotus sapidus in polyethylene glycol – phosphate aqueous two–phase systems. Process Biochem., 67, 165–174. DOI: 10.1016/j.procbio.2018.01.011.
- 4. Brown A.K., Kaul A., Varley J., 1999. Continuous foaming for protein recovery: part i. Recovery of ˛-casein. Biotechnol. Bioeng., 62, 278–290. DOI: 10.1002/(SICI)1097-0290(19990205) 62:3<278::AID-BIT4>3.0.CO;2-D.
- 5. Burghoff B., 2012. Foam fractionation applications, 161, 126–137. DOI: 10.1016/j.jbiotec.2012.03.008.
- 6. Eriksen N.T., 2008. Production of phycocyanin – a pigment with applications in biology, biotechnology, foods and medicine. Appl. Microbiol. Biotechnol., 80, 1–14. DOI: 10.1007/s00253-008-1542-y.
- 7. Fernandes R., Campos J., Serra M., Fidalgo J., Almeida H., Casas A., Toubarro D., Barros A.I.R.N.A., 2023. Exploring the benefits of phycocyanin: from spirulina cultivation to its widespread applications. Pharmaceuticals, 16, 592. DOI: 10.3390/ph16040592.
- 8. Gerken B.M., Nicolai A., Linke D., Zorn H., Berger R.G., Parlar H., 2006. Effective enrichment and recovery of laccase C using continuous foam fractionation. Sep. Purif. Technol., 49, 291–294. DOI: 10.1016/j.seppur.2005.09.015.
- 9. Gluszcz P., Klepacz-Smółka A., Ledakowicz S., 2018. Experimental evaluation of a helical laboratory photobioreactor for cultivation of thermophilic cyanobacteria – Hydrodynamics and mass transfer studies. Chem. Process Eng., 39, 457–473. DOI: 10.24425/122963.
- 10. Grilo A.L., Aires-Barros M.R., Azevedo A.M., 2016. Partitioning in aqueous two-phase systems: fundamentals, applications and trends. Sep. Purif. Rev., 45, 68–80. DOI: 10.1080/15422119.2014.983128.
- 11. Hsieh-Lo M., Castillo G., Ochoa-Becerra M.A., Mojica L., 2019. Phycocyanin and phycoerythrin: strategies to improve production yield and chemical stability. Algal Res., 42, 101600. DOI: 10.1016/J.ALGAL.2019.101600.
- 12. Iqbal M., Tao Y., Xie S., Zhu Y., Chen D., Wang X., Huang L., Peng D., Sattar A., Shabbir M.A.B., Hussain H.I., Ahmed S., Yuan Z., 2016. Aqueous two-phase system (ATPS): an overview and advances in its applications. Biol. Proced. Online, 18, 1–18. DOI: 10.1186/s12575-016-0048-8.
- 13. Jiang L., Wang Y., Yin Q., Liu G., Liu H., Huang Y., Li B., 2017. Phycocyanin: a potential drug for cancer treatment. J. Cancer, 8, 3416–3429. DOI: 10.7150/jca.21058.
- 14. Klepacz-Smółka A., Pietrzyk D., Szeląg R., Głuszcz P., Daroch M., Tang J., Ledakowicz S., 2020. Effect of light colour and photoperiod on biomass growth and phycocyanin production by Synechococcus PCC 6715. Bioresour. Technol., 313, 123700. DOI: 10.1016/j.biortech.2020.123700.
- 15. Kumpabooth K., Scamehorn J.F., Osuwan S., Harwell J.H., 1999. Surfactant recovery from water using foam fractionation: effect of temperature and added salt. Sep. Sci. Technol., 34, 157–172. DOI: 10.1081/SS-100100643.
- 16. Liu L.-N., Chen X.-L., Zhang X.-Y., Zhang Y.-Z., Zhou B.-C., 2005. One-step chromatography method for efficient separation and purification of R-phycoerythrin from Polysiphonia urceolata. J. Biotechnol., 116, 91–100. DOI: 10.1016/j.jbiotec.2004.09.017.
- 17. Manirafasha E., Ndikubwimana T., Zeng X., Lu Y., Jing K., 2016. Phycobiliprotein: potential microalgae derived pharmaceutical and biological reagent. Biochem. Eng. J., 109, 282–296. DOI: 10.1016/j.bej.2016.01.025.
- 18. Merz J., Zorn H., Burghoff B., Schembecker G., 2011. Purification of a fungal cutinase by adsorptive bubble separation: a statistical approach. Colloids Surf., A., 382, 81–87. DOI: 10.1016/j.colsurfa.2010.12.007.
- 19. Prinz A., Zeiner T., Vössing T., Schüttmann I., Zorn H., Górak A., 2012. Experimental investigation of laccase purification using aqueous two-phase extraction. Chem. Eng. Trans., 27, 349–354. DOI: 10.3303/CET1227059.
- 20. Spolaore P., Joannis-Cassan C., Duran E., Isambert A., 2006. Commercial applications of microalgae. J. Biosci. Bioeng., 101, 87–96. DOI: 10.1263/jbb.101.87.
- 21. Suarez Ruiz C.A., Kwaijtaal J., Peinado O.C., van den Berg C., Wijffels R.H., Eppink M.H.M., 2020. Multistep fractionation of microalgal biomolecules using selective aqueous two-phase systems. ACS Sustainable Chem. Eng., 8, 2441–2452. DOI: 10.1021/acssuschemeng.9b06379.
- 22. Uraizee F., Narsimhan G., 1990. Foam fractionation of proteins and enzymes. II. Performance and modelling. Enzyme Microb. Technol., 12, 315–316. DOI: 10.1016/0141-0229(90)90105-y.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1010a48-1455-4479-9aa9-585aff4988f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.