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Abstract 
 
A novel approach has been proposed in understanding and possible eliminating dangerous bending vibrations of 

high pressure fuel lines of low speed marine diesel engines. Although the theory of vibration of piping systems is 
rather developed today, the reasons for significant vibrations occurring in high pressure fuel pipes are not completely 
understood, and require thorough investigation and study. Both analytical and experimental studies performed in 
order to analyze dependence of diesel engines operational modes on the level of vibration and its properties. Results of 
numerical studies of the equation of motion of high pressure fuel pipes were obtained using Mathieu-Hill method. 
Those results were supplemented with data from full-scaled experiments performed on Sulzer 14RT-flex96C low speed 
main engine onboard of 15550 TEU container vessel Ebba Maersk. It has been proven that oscillations of the fuel in 
high pressure line, which take place in-between injections at the partial engine load, cause parametric bending 
vibration, and in some cases parametric resonance. Author has proposed a few methods in order to avoid that.            
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1. Introduction 

 
According to the statistics regularly published by the P&I clubs the reliability of high pressure 

fuel systems of marine low speed diesel engines remains not sufficiently high. For example, 
Swedish Club claims that defects of fuel equipment make five the most common failures of low 
speed diesel engines. Among those defects a special attention is drawn by the significant number 
of recorded cases of high pressure fuel pipes breakage. Since such failure leads to the complete 
stop of main engine (or slow down), it can be crucial for the safe navigation while in port area, 
during canal transit, or in other restricted areas. 

A possibility of the fire hazard in case of an oil spill caused by a broken pipe is prevented today 
by a double wall around all high pressure fuel lines of diesel engine. This measure became 
mandatory since July, 2003 when rule II-2/4 55 of the SOLAS Convention came into force.     

However, this does not eliminate the reason for the pipe breakage. This paper provides results 
of the research aimed to solve the problem of high pressure fuel systems inadequate reliability. 
Paper is a part of the complex research in reliability of heavy fuel and other oil products pumping 
systems.   

 
2. Methods of analysis 

 
The research was constructed on the basis of system-analysis technique. There were following 

stages included in the research process: 
- Identification of high pressure fuel system components and their functional properties; 
- Determination of the distinctions of high pressure fuel pipes breakage; 
- Synthesis the conception of the research; 



- Performing theoretical and experimental studies following by the final conclusions. 
It is known that design of high pressure fuel systems of marine diesel engines has not been 

changed significantly over the last century. Basically, fuel system consists of high pressure fuel 
pumps, fuel injection valves, and piping connecting them [9].  

Modern systems with an electronic control bring some changes; however those do not change 
the main principle of the functioning. Fuel has to be compressed, fed and injected into a 
combustion chamber during an every cycle [3].         

Here we determine the principal feature of the high pressure fuel system. An impact created by 
the high pressure fuel pump plunger is followed by the process of a continuous waves generation 
and propagation in a fuel. Those induce vibrational modes in pipes itself. It will be shown below 
that vibration will be our main concern.  

In order to understand those reasons, which lead to the breakage of high pressure fuel pipes, the 
literature survey was performed. 

Some authors report that vulnerability of high pressure pipes can be a result of structural 
defects, low quality steel, excessive operational pressure, and excessive bending due to vibration 
[2]. If the first three ones are easy to deal with, as damaged pipe can be replaced with a new one of 
higher quality, then the vibrational aspect brings some challenges.  

Since reasons for the critical vibration appearance are not always easy to find and eliminate, 
pipe breakage can repeat continuously. Therefore, this paper has raised a very actual and important 
problem. 

Crack formation due to a critical vibration of high pressure fuel pipes has one important 
distinct. It is oriented in the transverse plane with respect to the pipe’s axis, as shown in Fig. 1. 
Such typical crack will normally occur under the influence of the shear stresses, which appear due 
to the pipe bending vibration.    

 

 

Fig. 1. Typical transversally oriented crack of high pressure fuel pipe of Sulzer RT-flex main engine 

 
However, not always vibration can result in a pipe breakage. We can say vibration is absolutely 

normal condition of structural elements on a motor vessel. When a certain circumstances are 
fulfilled the resonant vibration can occur which can lead to the material disintegration. In order to 
determine the mechanism of dangerous resonance appearance in high pressure fuel pipes there 
were some theoretical and experimental tasks solved.  

 
 



3. Theoretical background 
 
As the governing concept of the research can now be formulated as critical bending vibrations 

of high pressure fuel pipe can take place in case of resonance, it is necessary to get numerical 
values of both forced and natural frequencies of those vibrations involved in creating a resonance 
condition. However, in case of high pressure fuel lines we need to consider parametric vibrations. 
Those occur when external force dynamic parameters are being changed in time. Such vibration 
can lead to the parametric resonance, which occurs in a mechanical system when a system is 
parametrically excited and oscillates at one of its resonant frequencies [8, 11]. 

In order to derive differential equation of high pressure fuel pipe bending vibration due to the 
fuel pressure oscillation let us consider the geometrical interpretation of the problem. As it can be 
seen from Fig. 2 element dx with mass dm = (m / L) dx of the rigidly mounted pipe oscillates in 
direction of the x axis and creates displacement w in direction of the z axis.  

 
Fig. 2. Analytical model of high pressure fuel pipe  

 
Transverse distributed load qt on a pipe expressed by the formula:  
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Then according to d'Alembert principle equation of motion can take form [1, 4, 5]: 
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where E is the Young’s modulus and J is the axial moment of inertia of the pipeline cross sectional 
area. 



Eq. (4) describes forced bending vibration of a pipe when energy losses, shear stress and 
steadying effect are considered not to be important. Since external force expressed by the 
harmonic function of time, bending vibration of a pipe has to be parametric. Parametric vibration 
is often analyzed by the Mathieu-Hill method. According to this method partial differential 
equation of motion can be brought to the Mathieu form and then studied for stability [8, 11].  

Let us search solution of Eq. (4) in the form of ( ) ( ) ( ).w x X x T t= ⋅   
Then we obtain: 
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Eq. 5 splits into two equations: 
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where α and β are the unknown equation splitting constants. 

When integrating eq. (6) we need to consider t as a constant. Let us search its partial solution in 
the form of  

.qxX e=                                                                    (8) 
By substituting eq. (8) into eq. (6), we obtain 
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From eq. (10) we find 
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By defining  
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we obtain integral of the eq. (6), which can be expressed in a following form: 

cosh sinh cos sin .j j k kX A z x B z x C z x D z x= + + +                                       (11) 
In order to find unknown constants A, B, C and D we need apply boundary conditions at the 

ends of the pipe in coordinates 0;x =  .x L=  Since pipe is rigidly mounted boundary, conditions 
should be 
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These conditions yield to the set of four equations, which have only trivial solution. By 

assuming ,j kz z=  we can simplify those equations. Then by equating the determinant of the 



system to the zero, frequency equation can be obtained. It is expressed as [1, 5] 
( ) 0,kz L∆ =  
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Transcendental eq. (12) has no analytical solution. Its first four roots are 4.73, 7.853, 10.996 
and 14.137. In general form solution of the eq. 12 can be expressed with sufficient approximation 
as  
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By excluding constants C, D and B from the eq. (11) and assuming A=1, we can simply find 
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ch cos sh sin .
ch cos sin sh

k k k k
k

k k k k

z x z x z x z xX x
z L z L z L z L

− −
= +

− −                                         (14)  
 

Then general integral of the eq. (5) can be expressed as a sum:  
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In terms of the result (13) solution for biquadratic equation will take now the form as 
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From where we define α and β: 
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Now let us integrate eq. (7), which takes the following form: 
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Formula for kp  defines natural frequency of order k of unloaded fuel pipe [1, 4, 5]. Vectors  
2
kb  

and 
2
kq  give the ratio between the maximum and minimum internal load and the critical load critP  

(for each k), correspondingly. It is clear that natural frequency of the loaded pipe can be found as  
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Eq. (18) is the required in our research Mathieu equation. In order to study motion described 
by the eq. (18) for stability, let us convert this equation to a more suitable form. 
By introducing another independent variable as 

2 ,x t= ω   
we can rewrite eq. (18) as 
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If we define  
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then eq. (18a) will take well known form [8, 11]: 
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Eq. (18b) can be also written in the Ince form:  
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Parameters λ and h2 as well as α and θ characterize the stability of motion. Combination of 
those parameters indicates either vibrations are limited or they do have high intensity and 
amplitude. In order to determine the stability of motion using parameters λ and h2 specially built 
chart is used. It is divided into zones of stable and unstable motion and called Ince-Strutt chart 
(Fig. 3) [11].   

Mathieu equation is the subcase of the Hill’s equation, where a general solution can be given 
by taking the "determinant" of an infinite matrix. For those who interested see literature [7, 11]  

 

 
Fig. 3. Ince-Strutt stability chart. Dashed zones are zones of instability 

 
4. Experimental setup 
  

Full-scale experimental study of vibrating processes in the fuel system pressure carried on the ship 
Ebba Maersk with displacement of 170,794 tons. Her propulsion plant is equipped with two-stroke low 
speed main engine Sulzer 14RT-flex96C. Engine maximum power is 80080 kW at 102 rev/min. This engine 
is equipped with a common rail fuel system with electrohydraulic control of the fuel injection [3]. 

The objective of the study was to get a full picture of the high pressure fuel pipes bending vibration. 
For this purpose bending vibration was registered during engine operation at different load (nominal and 
partial). Data obtained were electronically stored and then analyzed by using computer software.  

Since piezoelectric vibration sensors are commonly used for vibration detection [10], this was chosen 
for the experiment. Thin piezoelectric sensor was mounted by means of straps on the high pressure pipe 



during engine operation as shown in Fig. 4. Securely mounted sensor provides a qualitative signal 
transition. Oscillograms of vibration processes were obtained with the use of portable digital oscilloscope 
and recorded in its memory. 

During measurement the intermediate clamp for fixing the high pressure fuel pipe (Fig. 4) was 
made loosen. This was made to avoid any influence on a pipe bending vibration, and thus to have 
an agreement with analytical model. Pipe dimensions were measured to use in the modeling 
process.  

Each engine cylinder has three fuel injectors connected to injection control unit by means of 
high pressure pipes. Two of them have approximately the same length, and third one is shorter 
(center one). When performing experiment it was decided to obtain oscillograms for that pipe, 
which was considerably useful for the research. Pipe with higher vibration intensity was selected. 
This was one of the long pipes. 

 

 
Fig. 4. Vibration sensor mounting method 

 
5. Results and discussion 

 
Some interesting results were received during pipe bending vibration analysis. It was established that 

the oscillatory process in high pressure fuel pipe has a much longer duration and intensity when engine is 
running at partial load than at nominal. Bending vibration shown in Fig. 5 taken at 55 rpm has amplitude 
and intensity two times larger as that shown in Fig. 6 taken 82 rpm. 

After analysis performed it frequencies were found and compared. For those vibrations induced  
at low engine speed dominant frequency was approximately 50 Hz when frequency of injection was 0.9 
Hz. And for those forced vibrations at high engine speed main frequency was 50 when frequency of 
injection was 1.4 Hz. In order to understand the reason for such difference in frequencies and vibrational 
characteristics analytical model has to be analyzed. 

Only we are missing now the data for internal pressure amplitude and frequency, which are required in 
Eq. 18. Those will allow answering the question regarding stability of the vibrating system, which is studied 
here.  

Let us write down the parameters from Eq. (18a): 
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 Numerical values of those λ  and h2 for two cases outlined in the experimental part can be 

 



found by using data from the factory test records. Wartsila has reported test results for its Sulzer 
RT-flex 82C fuel injection control unit (ICU) performed in 2009 [6].  As it can be seen from the 
diagram of the fuel pressure before fuel injectors shown in Fig. 7, when injection is done, 
oscillation process takes in a fuel line. Frequency of those oscillations can be estimated as 200 Hz.  

 
 

Fig. 5. Bending vibration of high pressure fuel pipe when engine load is 55 rpm 

 
 

 
 

Fig. 6. Bending vibration of high pressure fuel pipe when engine load is 82 rpm 

 
Obviously, frequencies of the forced vibration for the partial load and nominal load cases 

should be different. It follows from the vibrational theory. If time between fuel injection is long 
enough, bending vibration in a fuel pipe to be induced by the post injection oscillations. 

Otherwise, frequency of injection should be the frequency of the forced vibration, since post 
injection oscillations are dumped at once.         
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Thus, looking at the diagram in Fig. 7 we can define the necessary numerical values for the 

final study. For the partial load we take  20aP =  MPa, 0  5P = MPa and 1 256ω = rad/s. And for the 

engine speed of 82 rpm values will be  60aP =  MPa, 0  5P = MPa and  8.6ω = rad/s. Results for the 
parameters λ  and h2 calculated for the two interested cases are presented in Table 1. There were 

following numerical values used for the pipe geometry: 2.8 5L = m, 0.004ir = m. The Young’s 
modulus was taken as 210E =  MPa. Moment of inertia is calculated with the next formula: 
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where id  is the internal diameter, oD is the outer diameter, 0.0325oD = m. 
 

 
Fig. 7. Injection test record for ICU 

 
By using the data from Table 1 and the stability chart in Fig. 3, we can observe that at the 

partial load parametric resonance can take place on the third vibrating mode; however we do not 
see it on the experimental oscillograms. Probably amplitude of the third mode is too small. In the 
same time first vibrating mode is very close to the area of instability, and this should be the cause 
of amplifying vibration with frequency of 25 Hz, which is very close to the first natural frequency 
of the pipe. 

 
Table 1. Dependence of the vibrating fuel pipe stability on the engine load 

 
Engine 

load 
Stability 

parameters 
Value k 

1 2 3 4 

Partial 
λ  0.035 0.272 1.047 2.862 
h2 5.674e-4 1.576e-3 3.089e-3 5.107e-3 



Nominal λ  748.235 5.803e3 2.233e4 6.104e4 
h2 36.309 100.857 197.68 326.777 

Natural frequency  
of the pipe pk, rad/s 118 328 643 1063 

 
In its turn parameters for the nominal engine load look fine. They all lie far in the stability 

zone. Experiment has shown availability of vibration with frequency of 50 Hz. This leads us to the 
second vibrating mode of the pipe. Obviously, first vibrating mode is being dumped by the forced 
vibration.  

 
6. Conclusions 

 
The reliability connected to bending vibrations of the high pressure fuel pipes of marine low 

speed diesel engines has been analyzed. Equation of motion has been studied for stability for two 
different loads of the diesel engine with use of Mathieu-Hill method.  

 Basing on the results of the study, there are following conclusions can be made: 
- High pressure fuel system reliability depends on the mode of diesel engine operation; 
- Although high pressure fuel systems of modern diesel engines are built according to the 

SOLAS Convention requirements, they cannot be considered reliable and safe; 
- When designing fuel system of low speed diesel engine, every maker needs to perform 

reliability analysis with an approach presented in this paper or similar; 
- Geometrical properties of high pressure fuel pipes can be adjusted to avoid the negative 

influence of fuel pressure oscillations on the parametric vibrations of those. 
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