PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Controllability result in α-norm for some impulsive partial functional integrodifferential equation with infinite delay in Banach spaces

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to study the controllability in the α-norm for some impulsive partial functional integrodifferential equation with infinite delay in Banach space. To do this, we give sufficient conditions ensuring the controllability by assuming that the undelayed part admits a resolvent operator in the sense of Grimmer and that the delayed part is continuous with respect to the fractional power of the generator. The results are obtained by using the Schauder fixed-point theorem.
Wydawca
Rocznik
Strony
223--237
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
  • Department of Mathematics and Informatics, Polytechnic University of Mongo, Mongo, Chad
Bibliografia
  • [1] S. Baghli, M. Benchohra and K. Ezzinbi, Controllability results for semilinear functional and neutral functional evolution equations with infinite delay, Surv. Math. Appl. 4 (2009), 15-39.
  • [2] K. Balachandran and R. Sakthivel, Controllability of functional semilinear integrodifferential systems in Banach spaces, J. Math. Anal. Appl. 255 (2001), no. 2, 447-457.
  • [3] M. Benchohra, J. Henderson and S. Ntouyas, Impulsive Differential Equations and Inclusions, Contemp. Math. Appl. 2, Hindawi, New York, 2006.
  • [4] Y.-K. Chang, Controllability of impulsive functional differential systems with infinite delay in Banach spaces, Chaos Solitons Fractals 33 (2007), no. 5, 1601-1609.
  • [5] W. Desch, R. Grimmer and W. Schappacher, Some considerations for linear integro-differential equations, J. Math. Anal. Appl. 104 (1984), no. 1, 219-234.
  • [6] B. Diao, K. Ezzinbi and M. Sy, Existence results in the α-norm for a class of neutral partial functional integro-differential equations, Afr. Mat. 26 (2015), no. 7-8, 1621-1635.
  • [7] K. Ezzinbi, G. Degla and P. Ndambomve, Controllability for some partial functional integrodifferential equations with nonlocal conditions in Banach spaces, Discuss. Math. Differ. Incl. Control Optim. 35 (2015), no. 1, 25-46.
  • [8] K. Ezzinbi and P. Ndambomve, On the controlability of some nonlinear impulsive partial functional integrodifferntial systems with infinite delay in Banach spaces, Open J. Math. Anal. 4 (2020), no. 2, 104-115.
  • [9] R. C. Grimmer, Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc. 273 (1982), no. 1, 333-349.
  • [10] R. C. Grimmer and A. J. Pritchard, Analytic resolvent operators for integral equations in Banach space, J. Differential Equations 50 (1983), no. 2, 234-259.
  • [11] V. Lakshmikantham, D. D. Ba˘ınov and P. S. Simeonov, Theory of Impulsive Differential Equations, Ser. Mod. Appl. Math. 6, World Scientific, Teaneck, 1989.
  • [12] M. Li, M. Wang and F. Zhang, Controllability of impulsive functional differential systems in Banach spaces, Chaos Solitons Fractals 29 (2006), no. 1, 175-181.
  • [13] M. Malik and A. Kumar, Existence and controllability results to second order neutral differential equation with non-instantaneous impulses, J. Control Decis. 7 (2020), no. 3, 286-308.
  • [14] A. K. Nain, R. K. Vats and A. Kumar, Caputo-Hadamard fractional differential equation with impulsive boundary conditions, J. Math. Model. 9 (2021), no. 1, 93-106.
  • [15] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer, New York, 1983.
  • [16] C. C. Travis and G. F. Webb, Existence, stability, and compactness in the α-norm for partial functional differential equations, Trans. Amer. Math. Soc. 240 (1978), 129-143.
  • [17] I. Zabsonre, Controllability in the α-norm of some impulsive differential equation with infinite delay in Banach spaces, Nonlinear Stud. 23 (2016), no. 3, 423-437.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0fc7f0b-59d1-4a53-ae4d-0a741d26822f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.