PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Preparation and characterisation of Pd nanocatalyst supported on nickel mesh

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The primary aim of the publication is to show the possibility of the synthesis of palladium nanoparticles directly on the nickel molecular mesh. A combination of chemical and physicochemical methods was used. Design/methodology/approach Palladium chloride was chosen as the precursor of palladium nanoparticles, dissolved in alcohol, water or a mixture thereof. Surface topography studies of the prepared nanoparticles were made using a scanning electron microscope, Supra 35 (Zeiss’s company), and transmission electron microscope S/TEM TITAN 80-300 (FEI company). Qualitative studies were performed using spectroscopy of scattered X-ray energy using the Energy Dispersive Spectrometer to define the chemical composition of prepared nanocatalysts. The chemical states of the elements were analysed using X-ray photoelectron spectroscopy. Nanocatalyst structures were identified using X-ray crystallography. Findings Using such methods proved that the obtained material is Pd-Ni synthesised using a mixture of alcohol and water assisted by ultrasound. Nanoparticles with oval shapes and diameters below 10 nm were obtained. Research limitations/implications During the tests, it was decided to abandon the use of the ascorbic acid reducer, which, combined with the temperature, had a negative impact on the nickel substrate. Practical implications Nanocatalyst has been achieving a gradually increasing interest from researchers in environmental areas. The developed materials can be used in low-temperature carbon dioxide methanation. Originality/value The results provide a novel road for designing and developing efficient, low-cost, and low-temperature double metallic catalysts.
Rocznik
Strony
212--220
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
  • Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Towarowa 7, 44-100 Gliwice, Poland
  • Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Towarowa 7, 44-100 Gliwice, Poland
autor
  • Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Centre for Science and Education, Institute of Physics, Silesian University of Technology, ul. Konarskiego 22b, 44-100 Gliwice, Poland
autor
  • Institute of Technology and Materials, Faculty of Mechanical Engineering, Jan Evangelista Purkyne University in Ústí nad Labem, 1 Pasteurova Str., 400 96 Ústí nad Labem, Czech Republic
autor
  • Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, ul. Roosevelta 40, 41-800 Zabrze, Poland
autor
  • Centre for Materials and Drug Discovery, Institute of Chemistry, Faculty of Science and Technology, University of Silesia, ul. Szkolna 9, 40-006 Katowice, Poland
Bibliografia
  • [1] P. Frontera, A. Macario, M. Ferraro, P. Antonucci, Supported Catalysts for CO 2 Methanation: A Review, Catalysts 7/2 (2017) 59. DOI: https://doi.org/10.3390/catal7020059
  • [2] L. Więcław-Solny, A. Wilk, T. Chwoła, A. Krótki, A. Tatarczuk, J. Zdeb, Catalytic carbon dioxide hydrogenation as a prospective method for Energy storage and utilization of captured CO2, Journal of Power Technologies 96/4 (2016) 213-218.
  • [3] A. Korzeniowska, J. Grzybek, K. Kałahurska, M. Kubu, W.J. Roth, B. Gil, The structure-catalytic activity relationship for the transient layered zeolite MCM-56 with MWW topology, Catalysis Today 345 (2020) 116-124. DOI: https://doi.org/10.1016/j.cattod.2019.09.044
  • [4] Z.W. She, K. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science 355/6321 (2017) eaad4998. DOI: https://doi.org/10.1126/science.aad4998
  • [5] M.M. Byranvand, A.N. Kharat, M.H. Bazagran, Titania Nanostructures for Dye-sensitized Solar Cells, Micro-Nano Letters 4 (2012) 253-266. DOI: https://doi.org/10.1007/BF03353723
  • [6] J. Polański, T. Siudyga, P. Bartczak, M. Kapkowski, W. Ambrożkiewicz, A. Nobis, R. Sitko, J. Klimontko, J. Szade, J. Lelątko, Oxide passivated Ni-supported Ru nanoparticles in silica: a new catalyst for low-temperature carbon dioxide methanation, Applied Catalysis B: Environmental 206 (2017) 16-23. DOI: https://doi.org/10.1016/j.apcatb.2017.01.017
  • [7] S. Ali, M.M. Khader, M.J. Almarri, A.G. Abdelmoneim, Ni-based nano-catalysts for the dry reforming of methane, Catalysis Today 343 (2020) 26-37. DOI: https://doi.org/10.1016/j.cattod.2019.04.066
  • [8] A. Kim, C. Sanchez, B. Haye, C. Boissière, C. Sassoye, D.P. Debecker, Mesoporous TiO 2 Support Materials for Ru-Based CO 2 Methanation Catalysts, ACS Applied Nano Materials 2/5 (2019) 3220-3230. DOI: https://doi.org/10.1021/acsanm.9b00518
  • [9] C. Swalus, M. Jacquemin, C. Poleunic, P. Bertrand, P. Ruiz, CO 2 methanation on Rh/γ-Al 2O 3 catalyst at low temperature: “In situ” supply of hydrogen by Ni/activated carbon catalyst, Applied Catalysis B Environmental 125 (2012) 41-50. DOI: https://doi.org/10.1016/j.apcatb.2012.05.019
  • [10] A. Wang, Y.-P. Hsieh, Y.-F. Chen, C.-Y. Mou, Au-Ag alloy nanoparticle as catalyst for CO oxidation: Effect of Si/Al ratio of mesoporous support, Journal of Catalysis 237/1 (2006) 197-206. DOI: https://doi.org/10.1016/j.jcat.2005.10.030
  • [11] H.-L. Yang, Q. Xu, Recent progress in synergistic catalysis over heterometallic nanoparticles, Journal of Materials Chemistry 21 (2011) 13705-13725. DOI: https://doi.org/10.1039/C1JM12020D
  • [12] M. Bernareggi, G.L. Chiarello, G. West, M. Ratova, A.M. Ferretti, P. Kelly, E. Selli, Cu and Pt clusters deposition on TiO 2 powders by DC magnetron sputtering for photocatalytic hydrogen production, Catalysis Today 326 (2019) 15-21. DOI: https://doi.org/10.1016/j.cattod.2018.07.011
  • [13] Z. Wei, J. Sun, Y. Li, A.K. Datye, Y. Wang, Bimetallic catalysts for hydrogen generation, Chemical Society Reviews 41 (2012) 7994-8008. DOI: https://doi.org/10.1039/C2CS35201J
  • [14] Z.-Q. Wang, Z.-N. Xu, S.-Y. Peng, M.-J. Zhang, G. Lu, Q.-S. Chen, Y. Chen, G.-C. Guo, High-Performance and Long-Lived Cu/SiO2 nanocatalyst for CO2 Hydrogenation, ACS Catalysis 5/7 (2015) 4255-4259. DOI: https://doi.org/10.1021/acscatal.5b00682
  • [15] I. Lindau, P. Pianetta, K.Y. Yu, W.E. Spicer, Photoemission of gold in the energy range 30-300 eV using synchrotron radiation, Physical Review B 13 (1976) 492-498. DOI: https://doi.org/10.1103/PhysRevB.13.492
  • [16] L.-S. Wu, X.-P. Wen, H. Wen, H.-B. Dai, P. Wang, Palladium decorated porous nickel having enhanced electrocatalytic performance for hydrazine oxidation, Journal of Power Sources 412 (2019) 71-77. DOI: https://doi.org/10.1016/j.jpowsour.2018.11.023
  • [17] I.G. Casella, M. Contursi, Pulsed electrodeposition of nickel/palladium globular particles from an alkaline gluconate bath. An electrochemical, XPS and SEM investigation, Journal of Electroanalytical Chemistry 692 (2013) 80-86. DOI: https://doi.org/10.1016/j.jelechem.2013.01.015
  • [18] Z.M. Rdzawski, J.P. Stobrawa, J. Szynowski, Microstructure stability of the PtRh alloys used for catalytic ammonia oxidation, Journal of Achievements in Materials and Manufacturing Engineering 24/1 (2007) 106-114.
  • [19] E. David, Mechanical strength and reliability of the porous materials used as adsorbents/catalysts and the new development trends, Archives of Materials Science and Engineering 73/1 (2015) 5-17.
  • [20] D. Sharma, R. Sharma, D. Chand, A. Chaudhary, Nanocatalysts as potential candidates in transforming CO2 into valuable fuels and chemicals: A review, Environmental Nanotechnology, Monitoring and Management 18 (2022) 100671. DOI: https://doi.org/10.1016/j.enmm.2022.100671
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0fc0e23-933a-4235-9f2c-561049115734
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.