Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The primary aim of the publication is to show the possibility of the synthesis of palladium nanoparticles directly on the nickel molecular mesh. A combination of chemical and physicochemical methods was used. Design/methodology/approach Palladium chloride was chosen as the precursor of palladium nanoparticles, dissolved in alcohol, water or a mixture thereof. Surface topography studies of the prepared nanoparticles were made using a scanning electron microscope, Supra 35 (Zeiss’s company), and transmission electron microscope S/TEM TITAN 80-300 (FEI company). Qualitative studies were performed using spectroscopy of scattered X-ray energy using the Energy Dispersive Spectrometer to define the chemical composition of prepared nanocatalysts. The chemical states of the elements were analysed using X-ray photoelectron spectroscopy. Nanocatalyst structures were identified using X-ray crystallography. Findings Using such methods proved that the obtained material is Pd-Ni synthesised using a mixture of alcohol and water assisted by ultrasound. Nanoparticles with oval shapes and diameters below 10 nm were obtained. Research limitations/implications During the tests, it was decided to abandon the use of the ascorbic acid reducer, which, combined with the temperature, had a negative impact on the nickel substrate. Practical implications Nanocatalyst has been achieving a gradually increasing interest from researchers in environmental areas. The developed materials can be used in low-temperature carbon dioxide methanation. Originality/value The results provide a novel road for designing and developing efficient, low-cost, and low-temperature double metallic catalysts.
Wydawca
Rocznik
Tom
Strony
212--220
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
- Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Towarowa 7, 44-100 Gliwice, Poland
autor
- Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Towarowa 7, 44-100 Gliwice, Poland
autor
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
- Centre for Science and Education, Institute of Physics, Silesian University of Technology, ul. Konarskiego 22b, 44-100 Gliwice, Poland
autor
- Institute of Technology and Materials, Faculty of Mechanical Engineering, Jan Evangelista Purkyne University in Ústí nad Labem, 1 Pasteurova Str., 400 96 Ústí nad Labem, Czech Republic
autor
- Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, ul. Roosevelta 40, 41-800 Zabrze, Poland
autor
- Centre for Materials and Drug Discovery, Institute of Chemistry, Faculty of Science and Technology, University of Silesia, ul. Szkolna 9, 40-006 Katowice, Poland
Bibliografia
- [1] P. Frontera, A. Macario, M. Ferraro, P. Antonucci, Supported Catalysts for CO 2 Methanation: A Review, Catalysts 7/2 (2017) 59. DOI: https://doi.org/10.3390/catal7020059
- [2] L. Więcław-Solny, A. Wilk, T. Chwoła, A. Krótki, A. Tatarczuk, J. Zdeb, Catalytic carbon dioxide hydrogenation as a prospective method for Energy storage and utilization of captured CO2, Journal of Power Technologies 96/4 (2016) 213-218.
- [3] A. Korzeniowska, J. Grzybek, K. Kałahurska, M. Kubu, W.J. Roth, B. Gil, The structure-catalytic activity relationship for the transient layered zeolite MCM-56 with MWW topology, Catalysis Today 345 (2020) 116-124. DOI: https://doi.org/10.1016/j.cattod.2019.09.044
- [4] Z.W. She, K. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science 355/6321 (2017) eaad4998. DOI: https://doi.org/10.1126/science.aad4998
- [5] M.M. Byranvand, A.N. Kharat, M.H. Bazagran, Titania Nanostructures for Dye-sensitized Solar Cells, Micro-Nano Letters 4 (2012) 253-266. DOI: https://doi.org/10.1007/BF03353723
- [6] J. Polański, T. Siudyga, P. Bartczak, M. Kapkowski, W. Ambrożkiewicz, A. Nobis, R. Sitko, J. Klimontko, J. Szade, J. Lelątko, Oxide passivated Ni-supported Ru nanoparticles in silica: a new catalyst for low-temperature carbon dioxide methanation, Applied Catalysis B: Environmental 206 (2017) 16-23. DOI: https://doi.org/10.1016/j.apcatb.2017.01.017
- [7] S. Ali, M.M. Khader, M.J. Almarri, A.G. Abdelmoneim, Ni-based nano-catalysts for the dry reforming of methane, Catalysis Today 343 (2020) 26-37. DOI: https://doi.org/10.1016/j.cattod.2019.04.066
- [8] A. Kim, C. Sanchez, B. Haye, C. Boissière, C. Sassoye, D.P. Debecker, Mesoporous TiO 2 Support Materials for Ru-Based CO 2 Methanation Catalysts, ACS Applied Nano Materials 2/5 (2019) 3220-3230. DOI: https://doi.org/10.1021/acsanm.9b00518
- [9] C. Swalus, M. Jacquemin, C. Poleunic, P. Bertrand, P. Ruiz, CO 2 methanation on Rh/γ-Al 2O 3 catalyst at low temperature: “In situ” supply of hydrogen by Ni/activated carbon catalyst, Applied Catalysis B Environmental 125 (2012) 41-50. DOI: https://doi.org/10.1016/j.apcatb.2012.05.019
- [10] A. Wang, Y.-P. Hsieh, Y.-F. Chen, C.-Y. Mou, Au-Ag alloy nanoparticle as catalyst for CO oxidation: Effect of Si/Al ratio of mesoporous support, Journal of Catalysis 237/1 (2006) 197-206. DOI: https://doi.org/10.1016/j.jcat.2005.10.030
- [11] H.-L. Yang, Q. Xu, Recent progress in synergistic catalysis over heterometallic nanoparticles, Journal of Materials Chemistry 21 (2011) 13705-13725. DOI: https://doi.org/10.1039/C1JM12020D
- [12] M. Bernareggi, G.L. Chiarello, G. West, M. Ratova, A.M. Ferretti, P. Kelly, E. Selli, Cu and Pt clusters deposition on TiO 2 powders by DC magnetron sputtering for photocatalytic hydrogen production, Catalysis Today 326 (2019) 15-21. DOI: https://doi.org/10.1016/j.cattod.2018.07.011
- [13] Z. Wei, J. Sun, Y. Li, A.K. Datye, Y. Wang, Bimetallic catalysts for hydrogen generation, Chemical Society Reviews 41 (2012) 7994-8008. DOI: https://doi.org/10.1039/C2CS35201J
- [14] Z.-Q. Wang, Z.-N. Xu, S.-Y. Peng, M.-J. Zhang, G. Lu, Q.-S. Chen, Y. Chen, G.-C. Guo, High-Performance and Long-Lived Cu/SiO2 nanocatalyst for CO2 Hydrogenation, ACS Catalysis 5/7 (2015) 4255-4259. DOI: https://doi.org/10.1021/acscatal.5b00682
- [15] I. Lindau, P. Pianetta, K.Y. Yu, W.E. Spicer, Photoemission of gold in the energy range 30-300 eV using synchrotron radiation, Physical Review B 13 (1976) 492-498. DOI: https://doi.org/10.1103/PhysRevB.13.492
- [16] L.-S. Wu, X.-P. Wen, H. Wen, H.-B. Dai, P. Wang, Palladium decorated porous nickel having enhanced electrocatalytic performance for hydrazine oxidation, Journal of Power Sources 412 (2019) 71-77. DOI: https://doi.org/10.1016/j.jpowsour.2018.11.023
- [17] I.G. Casella, M. Contursi, Pulsed electrodeposition of nickel/palladium globular particles from an alkaline gluconate bath. An electrochemical, XPS and SEM investigation, Journal of Electroanalytical Chemistry 692 (2013) 80-86. DOI: https://doi.org/10.1016/j.jelechem.2013.01.015
- [18] Z.M. Rdzawski, J.P. Stobrawa, J. Szynowski, Microstructure stability of the PtRh alloys used for catalytic ammonia oxidation, Journal of Achievements in Materials and Manufacturing Engineering 24/1 (2007) 106-114.
- [19] E. David, Mechanical strength and reliability of the porous materials used as adsorbents/catalysts and the new development trends, Archives of Materials Science and Engineering 73/1 (2015) 5-17.
- [20] D. Sharma, R. Sharma, D. Chand, A. Chaudhary, Nanocatalysts as potential candidates in transforming CO2 into valuable fuels and chemicals: A review, Environmental Nanotechnology, Monitoring and Management 18 (2022) 100671. DOI: https://doi.org/10.1016/j.enmm.2022.100671
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0fc0e23-933a-4235-9f2c-561049115734
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.