PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improvement of Cerebral Microbleeds Detection Based on Discriminative Feature Learning

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The existence and distribution pattern of cerebral microbleeds (CMBs) are associated with some underlying aetiologies caused by intra-cerebral hemorrhage (ICH). CMBs as a kind of subclinical sign can be recognized via magnetic resonance (MR) imaging technique in a few years before the onset of the disease. Hence, detecting CMBs accurately is important for treating and preventing related cerebral disease. In this study, we employed convolution neural network (CNN) for CMBs detection because of its powerful ability in image recognition. In view of too many efforts on optimizing the structure of CNN for achieving a better performance, we introduced center loss, which can greatly enhance the discriminative power of the deeply learned features, to CMBs detection for the first time. It is found that the performances of convolution neural network (CNN) trained under the joint supervision of softmax loss and center loss were significantly better than that under the supervision of softmax loss, even if there are few mislabelled samples in training data. With this trick, we achieved a high performance with a sensitivity of 98.869 ± 1.026%, a specificity of 96.491 ± 0.367%, and an accuracy of 97.681 ± 0.497%, which is better than four state-of-the-art methods.
Wydawca
Rocznik
Strony
231--248
Opis fizyczny
Bibliogr. 34 poz., fot., rys., tab., wykr.
Twórcy
autor
  • School of Earth Sciences and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
autor
  • Department of Neurology, First Affiliated Hospital of Nanjing Medical Univ., Nanjing 210029, China
  • School of Architecture Building and Civil Engineering, Loughborough University, Loughborough, LE11 3TU, UK
autor
  • School of Earth Sciences and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
Bibliografia
  • [1] Greenberg SM, Vernooij MW, Charlotte C, Anand V, Rustam ASS, Steven W, Launer LJ, Buchem V Mark A, Monique Mb B. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurology, 2009. 8(2):165-174. doi:10.1016/S1474-4422(09)70013-4.
  • [2] Andreas C, Clare S, Werring DJ. Cerebral microbleeds on magnetic resonance imaging and anticoagulant-associated intracerebral hemorrhage risk. Frontiers in Neurology, 2012. 3:133. doi:10.3389/fneur.2012.00133.
  • [3] Charlotte C, Rustam ASS, Joanna W. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain A Journal of Neurology, 2007. 130(Pt 8):1988. doi:10.1093/brain/awl387.
  • [4] Zhang YD, Hou XX, Chen Y, Chen H, Yang M, Yang J, Wang SH. Voxelwise detection of cerebral microbleed in CADASIL patients by leaky rectified linear unit and early stopping. Multimedia Tools and Applications, 2017. pp. 1-21. doi:10.1007/s11042-017-4383-9.
  • [5] Mittal S, Wu Z, Neelavalli J, Haacke E. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR. American journal of neuroradiology, 2009. 30(2):232252. doi:10.3174/ajnr.A1461.
  • [6] Nandigam R, Viswanathan P Adelgado, Skehan M, Smith E, Rosand J, Greenberg S, Dickerson B. MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR. American journal of neuroradiology, 2009. 30(2):338-343. doi:10.3174/ajnr.A1355.
  • [7] Gregoire SM, Chaudhary UJ, Brown MM, Yousry TA, Kallis C, Jger HR, Werring DJ. The Microbleed Anatomical Rating Scale (MARS): reliability of a tool to map brain microbleeds. Neurology, 2009. 73(21):1759. doi:10.1212/WNL.0b013e3181c34a7d.
  • [8] Seghier ML, Kolanko MA, Leff AP, Jger HR, Gregoire SM, Werring DJ. Microbleed detection using automated segmentation (MIDAS): a new method applicable to standard clinical MR images. PloS one, 2011. 6(3):e17547. doi:10.1371/journal.pone.0017547.
  • [9] Barnes SRS, E Mark H, Muhammad A, Boikov AS, Wolff K, Dan K. Semiautomated detection of cerebral microbleeds in magnetic resonance images. Magnetic Resonance Imaging, 2011. 29(6):844-852. doi:10.1016/j.mri.2011.02.028.
  • [10] Kuijf HJ, Jeroen DB, Geerlings MI, Conijn MMA, Viergever MA, Geert Jan B, Vincken KL. Efficient detection of cerebral microbleeds on 7.0T MR images using the radial symmetry transform. Neuroimage, 2012. 59(3):2266-2273. doi:10.1016/j.neuroimage.2011.09.061.
  • [11] Bian W, Hess CP, Chang SM, Nelson SJ, Lupo JM. Computer-aided detection of radiation-induced cerebral microbleeds on susceptibility-weighted MR images. NeuroImage. Clinical, 2013. 2:282290. doi:10.1016/j.nicl.2013.01.012.
  • [12] Roy S, Jog A, Magrath E, Butman JA, Pham DL. Cerebral microbleed segmentation from susceptibility weighted images. In: Medical Imaging 2015: Image Processing, volume 9413 of 2015 p. 94131E. doi:10.1117/12.2082237.
  • [13] Fazlollahi A, Meriaudeau F, Giancardo L, Villemagne VL, Rowe CC, Yates P, Salvado O, Bourgeat P, AIBL Research Group. Computer-aided detection of cerebral microbleeds in susceptibility-weighted imaging. Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society, 2015. 46 Pt 3:269276. doi:10.1016/j.compmedimag.2015.10.001.
  • [14] van den Heuvel TLA, van der Eerden A, Manniesing R, Ghafoorian M, Tan T, Andriessen TMJC, Vande Vyvere T, van den Hauwe L, Ter Haar Romeny B, Goraj B, Platel B. Automated detection of cerebral microbleeds in patients with Traumatic Brain Injury. NeuroImage. Clinical, 2016. 12:241251. doi:10.1016/j.nicl.2016.07.002.
  • [15] Zhang YD, Zhang Y, Hou XX, Chen H, Wang SH. Seven-layer deep neural network based on sparse autoencoder for voxelwise detection of cerebral microbleed. Multimedia Tools and Applications, 2018. 77(9):10521-10538. doi:10.1007/s11042-017-4554-8.
  • [16] Wang S, Jiang Y, Hou X, Cheng H, Du S. Cerebral Micro-Bleed Detection Based on the Convolution Neural Network With Rank Based Average Pooling. IEEE Access, 2017. 5:16576-16583. doi:10.1109/ACCESS.2017.2736558.
  • [17] Baccouche M, Mamalet F, Wolf C, Garcia C, Baskurt A. Sequential Deep Learning for Human Action Recognition. In: Salah AA, Lepri B (eds.), Human Behavior Understanding. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-642-25446-8, 2011 pp. 29-39.
  • [18] Ji S, Xu W, Yang M, Yu K. 3D Convolutional Neural Networks for Human Action Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013. 35(1):221-231. doi:10.1109/TPAMI. 2012.59.
  • [19] Wang L, Qiao Y, Tang X. Action recognition with trajectory-pooled deep-convolutional descriptors. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015 pp. 4305-4314. doi:10.1109/CVPR.2015.7299059.
  • [20] Zhou B, Lapedriza A, Xiao J, Torralba A, Oliva A. Learning Deep Features for Scene Recognition Using Places Database. In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 1, NIPS’14. MIT Press, Cambridge, MA, USA, 2014 pp. 487-495. URL http://dl.acm.org/citation.cfm?id=2968826.2968881.
  • [21] Li H, Lin Z, Shen X, Brandt J, Hua G. A convolutional neural network cascade for face detection. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015 pp. 5325-5334. doi:10.1109/CVPR.2015.7299170.
  • [22] Wang SH, Phillips P, Sui Y, Liu B, Yang M, Cheng H. Classification of Alzheimer’s Disease Based on Eight-Layer Convolutional Neural Network with Leaky Rectified Linear Unit and Max Pooling. Journal of Medical Systems, 2018. 42(5):85. doi:10.1007/s10916-018-0932-7.
  • [23] Wang SH, Lv YD, Sui Y, Liu S, Wang SJ, Zhang YD. Alcoholism Detection by Data Augmentation and Convolutional Neural Network with Stochastic Pooling. Journal of Medical Systems, 2017. 42(1):2. doi:10.1007/s10916-017-0845-x.
  • [24] Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR, 2014. abs/1409.1556. 1409.1556, URL http://arxiv.org/abs/1409.1556.
  • [25] Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, NIPS’12. Curran Associates Inc., USA, 2012 pp. 1097-1105. URL http://dl.acm.org/citation.cfm?id=2999134.2999257.
  • [26] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015 pp. 1-9. doi:10.1109/CVPR.2015.7298594.
  • [27] He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. CoRR, 2015. abs/1512.03385. 1512.03385, URL http://arxiv.org/abs/1512.03385.
  • [28] He K, Zhang X, Ren S, Sun J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: 2015 IEEE International Conference on Computer Vision (ICCV). 2015 pp.1026-1034. doi:10.1109/ICCV.2015.123.
  • [29] Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32Nd International Conference on International Conference on Machine Learning - Volume 37, ICML’15. JMLR.org, 2015 pp. 448-456. URL http://dl.acm.org/citation.cfm?id=3045118.3045167.
  • [30] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res., 2014. 15(1):1929-1958. URL http://dl.acm.org/citation.cfm?id=2627435.2670313.
  • [31] Sun Y, Chen Y, Wang X, Tang X. Deep Learning Face Representation by Joint Identification-verification. In: Proceedings of the 27th International Conference on Neural Information Processing Systems – Volume 2, NIPS’14. MIT Press, Cambridge, MA, USA, 2014 pp. 1988-1996. URL http://dl.acm.org/citation.cfm?id=2969033.2969049.
  • [32] Schroff F, Kalenichenko D, Philbin J. FaceNet: A unified embedding for face recognition and clustering. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 00. 2015 pp.815-823. doi:10.1109/CVPR.2015.7298682.
  • [33] Wen Y, Zhang K, Li Z, Qiao Y. A Discriminative Feature Learning Approach for Deep Face Recognition. In: Leibe B, Matas J, Sebe N, Welling M (eds.), Computer Vision - ECCV 2016. Springer International Publishing, Cham. ISBN 978-3-319-46478-7, 2016 pp. 499-515.
  • [34] dos Santos Ferreira MV, de Carvalho Filho AO, de Sousa AD, Silva AC, Gattass M. Convolutional neural network and texture descriptor-based automatic detection and diagnosis of glaucoma. Expert Systems with Applications, 2018. 110:250-263. doi:https://doi.org/10.1016/j.eswa.2018.06.010.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0f9879e-3d4d-458f-b96b-7397e6aaa88e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.