Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
O obliczeniowych zadaniach przy wyznaczaniu sterowań hierarchicznych dla jednowymiarowej linii przesyłowej
Języki publikacji
Abstrakty
In this paper, motivated by a physics problem, we investigate some numerical and computational aspects for the problem of hierarchical controllability in one-dimensional wave equation in domains with a moving boundary. Some controls act in part of the boundary and define a strategy of equilibrium between them, considering a leader control and a follower. Thus, we introduced the concept of hierarchical control to solve the problem and mapped the Stackelberg Strategy between these controls. The numerical methods described here consist of a combination of the following: finite element method (FEM) for space approximation; finite difference method (FDM) for time discretization and fixed-point algorithm for the solution of the total discrete control problem. Data programming and computer simulations are performed in FreeFem++ and for a better presentation of the experiments we use Matlab.
W tym artykule, motywowanym problemem fizycznym, badamy pewne aspekty numeryczne i obliczeniowe problemu sterowalności hierarchicznej w jednowymiarowym równaniu falowym w domenach z ruchomą granicą. Niektóre sterowania są na brzegu i definiują strategię równowagi między nimi, biorąc pod uwagę sterowania lidera i naśladowcę. W związku z tym wprowadziliśmy koncepcję sterowań hierarchicznych w celu rozwiązania tego problemu i przyporządkowaliśmy strategię Stackelberga między tymi strategiami. Opisane tutaj metody numeryczne składają się z kombinacji następujących elementów: metoda elementów skończonych (MES) dla aproksymacji przestrzennej; metoda różnic skończonych (FDM) do dyskretyzacji czasu i algorytm stałoprzecinkowy do rozwiązania problemu całkowitego sterowania dyskretnego. Programowanie danych i symulacje komputerowe wykonujemy w FreeFem++, a dla lepszej prezentacji eksperymentów używamy Matlaba.
Wydawca
Czasopismo
Rocznik
Tom
Strony
107--128
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
- Fundação Universidade Estadual do Piauí: Teresina, Piauí, Brazil
autor
- Fundação Universidade Estadual do Piauí: Teresina, Piauí, Brazil
- Universidade Estadual do Piauí(UESPI) Coordenação de Ciências da Computação, Parnaíba, PI, Brazil
Bibliografia
- [1] I. Boutaayamou, L. Maniar, and O. Oukdach. Stackelberg-Nash null controllability of heat equation with general dynamic boundary conditions. arXiv preprint arXiv:2109.02356, 2021.
- [2] P. P. Carvalho and E. Fernández-Cara. On the computation of Nash and Pareto equilibria for some bi-objective control problems. Journal of Scientific Computing, 78(1):246–273, 2019.
- [3] L. Cui and H. Gao. Exact controllability for a wave equation with mixed boundary conditions in a non-cylindrical domain. Electron. J. Differ. Equ, 101(1), 2014.
- [4] L. Cui, X. Liu, and H. Gao. Exact controllability for a one-dimensional wave equation in non-cylindrical domains. Journal of Mathematical Analysis and Applications, 402(2):612–625, 2013.
- [5] L. Cui, Y. Jiang, and Y. Wang. Exact controllability for a one-dimensional wave equation with the fixed endpoint control. Boundary Value Problems, 2015(1):1–10, 2015.
- [6] P. P. de Carvalho. Some numerical results for control of 3d heat equations using Nash equilibrium. Computational and Applied Mathematics, 40(3):1–30, 2021.
- [7] P. P. de Carvalho and E. Fernández-Cara. Numerical Stackelberg– Nash control for the heat equation. SIAM Journal on Scientific Computing, 42(5):A2678–A2700, 2020.
- [8] P. P. de Carvalho, E. Fernández-Cara, and J. B. L. Ferrel. On the computation of Nash and Pareto equilibria for some bi-objective control problems for the wave equation. Advances in Computational Mathematics, 46(5):1–30, 2020.
- [9] I. P. de Jesus. Hierarchical control for the wave equation with a moving boundary. Journal of Optimization Theory and Applications, 171(1):336–350, 2016.
- [10] I. P. de Jesus. Approximate controllability for a one-dimensional wave equation with the fixed endpoint control. Journal of Differential Equations, 263(9):5175–5188, 2017.
- [11] I. P. de Jesus and S. B. de Menezes. On the approximate controllability of Stackelberg–Nash strategies for linear heat equations in Rn with potentials. Applicable Analysis, 94(4):780–799, 2015.
- [12] O. P. de Sá Neto and H. A. S. Costa. Estimation of decoherence in electromechanical circuits. Phys. Lett., A, 383(31):4, 2019.
- [13] O. P. de Sá Neto and M. C. de Oliveira. Quantum bit encoding and information processing with field superposition states in a circuit. Journal of Physics B: Atomic, Molecular and Optical Physics, 45(18):185505, 2012.
- [14] O. P. de Sá Neto, M. C. de Oliveira, and A. O. Caldeira. Generation of superposition states and charge-qubit relaxation probing in a circuit. Journal of Physics B: Atomic, Molecular and Optical Physics, 44(13):135503, jun 2011.
- [15] O. P. de Sá Neto, M. C. de Oliveira, F. Nicacio, and G. J. Milburn. Capacitive coupling of two transmission line resonators mediated by the phonon number of a nanoelectromechanical oscillator. Phys. Rev. A, 90: 023843, Aug 2014.
- [16] O. P. de Sá Neto, M. C. de Oliveira, and G. J. Milburn. Temperature measurement and phonon number statistics of a nanoelectromechanical resonator. New Journal of Physics, 17(9):093010, 2015.
- [17] E. Fernández-Cara and I. Marín-Gayte. Theoretical and numerical results for some bi-objective optimal control problems. Commun. Pure Appl. Anal., 19(4):2101–2126, 2020.
- [18] D. C. Gomes, M. A. Rincon, M. D. G. d. Silva, and G. O. Antunes. Theoretical and computational analysis of a nonlinear Schrödinger problem with moving boundary. Advances in Computational Mathematics, 45(2):981–1004, 2019.
- [19] P. H Müller. L. hörmander, linear partial differential operators. viii+ 284 s. m. 1 fig. berlin/göttingen/heidelberg 1963. springer-verlag. preis geb. dm 42,-. Zeitschrift Angewandte Mathematik und Mechanik, 44(3): 139–139, 1964.
- [20] F. Hecht. New development in freefem++. J. Numer. Math., 20(3-4): 251–265, 2012.
- [21] V. Hernández-Santamaría and L. de Teresa. Robust Stackelberg controllability for linear and semilinear heat equations. Evolution Equations & Control Theory, 7(2):247, 2018.
- [22] V. Hernández-Santamaría and L. d. Teresa. Some remarks on the hierarchic control for coupled parabolic pdes. In Recent advances in PDEs: analysis, numerics and control, pages 117–137. Springer, 2018.
- [23] V. Hernandez-Santamaria, L. de Teresa, and A. Poznyak. Hierarchic control for a coupled parabolic system. Portugaliae Mathematica, 73(2): 115–137, 2016.
- [24] J. Limaco, H. Clark, and L. Medeiros. Remarks on hierarchic control. Journal of mathematical analysis and applications, 359(1):368–383, 2009.
- [25] M. M. Miranda. Hum and the wave equation with variable coefficients. Asymptotic Analysis, 11(4):317–341, 1995.
- [26] J. Nash. Non-cooperative games. Annals of Mathematics, pages 286–295, 1951.
- [27] D. M. Pozar. Microwave engineering. John Wiley & sons, 2011.
- [28] A. M. Ramos. Nash equilibria strategies and equivalent single-objective optimization problems. the case of linear partial differential equations. arXiv preprint arXiv:1908.11858, 2019.
- [29] A. M. Ramos, R. Glowinski, and J. Periaux. Nash equilibria for the multiobjective control of linear partial differential equations. J. Optim. Theory Appl., 112(3):457–498, 2002.
- [30] A. M. Ramos, R. Glowinski, and J. Periaux. Pointwise control of the Burgers equation and related Nash equilibrium problems: Computational approach. J. Optim. Theory Appl., 112(3):499–516, 2002.
- [31] R. T. Rockafellar. Convex analysis, volume 28 of Princeton Math. Ser. Princeton University Press, Princeton, NJ, 1970.
- [32] H. Sun, H. Li, and L. Lu. Exact controllability for a string equation in domains with moving boundary in one dimension. Electron. J. Differ. Equ, 98(1), 2015.
- [33] H. Von Stackelberg. Marktform und gleichgewicht. J. Springer, 1934.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0f8dc6c-8f88-4c1d-ab4b-01b3bdf93910