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Abstract In this paper, motivated by a physics problem, we investigate some nu-
merical and computational aspects of the problem of hierarchical controllability in
one-dimensional wave equations in domains with a moving boundary. Some controls
act in part of the boundary and define a strategy of equilibrium between them,
considering a leader’s control and a follower’s. Thus, we introduced the concept of
hierarchical control to solve the problem and mapped the Stackelberg Strategy be-
tween these controls. The numerical methods described here consist of a combination
of the following: finite element method (FEM) for space approximation; finite differ-
ence method (FDM) for time discretization and fixed-point algorithm for the solution
of the total discrete control problem. Data programming and computer simulations
are performed in FreeFem++ and for a better presentation of the experiments we
use Matlab.
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1. Introduction
On several occasions, controlling a problem may involve more than one

agent (control). For such situations, we can define a strategy that indicates
the desired behavior. This paper deals with the numerical solution of a con-
trollability problem for the wave equation through a hierarchy of controls in
the boundary. More precisely, we have chosen the so-called Stackelberg-Nash
method, which can be briefly described as follows:

• We have control of two kinds: leaders and followers.

• We associate to leader a Nash equilibrium, that corresponds to a non-
cooperative multiple-objective optimal control problem.

• Then, we choose the leader among the set of controls by minimizing a
suitable functional.
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Initially, in game theory, a player is a strategic decision-maker within
the context of the game. And the game is characterized by any set of cir-
cumstances that have an outcome depending on the actions of two or more
decision-makers (players). In a hierarchical game, that is, in which all players
make their decisions based on a decision by a leading player, and a result
is achieved for all players, this is called the equilibria position. In our case,
there will be no cooperation in decision-making between players. In other
words, fixed a leader we will dedicate ourselves to the study of equilibria
where there is a leader and the other players adopt Nash equilibrium in the
equations. The process in the problems above is a combination of strategies
and is called the Stackelberg-Nash strategy. For more details on the noncoop-
erative optimization strategy proposed by Nash (see [26]) and the Stackelberg
hierarchical-cooperative strategy (see [33]).

Some numerical and computational results involving Nash equilibrium we
can found in [2], [29] and [30], the Stackelberg-Nash equilibrium in [7]. For the
algorithm construction, we adapt the ideas contained in [8] in that the authors
work in numerical viewpoint the Nash equilibrium for the wave equations, but
the controls domains acting in subregions of the domain.

The main contribution of this article resides in the numerical results and
computational simulations associated with hierarchical control problems in
which the boundary conditions are moving.

The structure of the article is given as follows: In Section 2 we present
a physical motivation for the problem. In Section 3 we give the problem
formulation. Section 4 is devoted to studying the optimality systems for the
leader and follower controls where the principal results for the strategy of
Nash for the linear system are obtained as in [10]. Section 5 we leave it
reserved for full discretization and presentation of the algorithm used to solve
the problem. Section 6 and Appendices concentrates tables and numerical
experiments resulting from the data simulation presented in Section 5. Finally,
in Section 7 some comments and possible advances are added.

2. Physical Systems
When we transmit a microwave signal through a l length transmission

line, if the wavelength is much greater than the cross-sectional dimension of
the line, the loads on the transmission line can be considered as if they were
moving in a single dimension, figure 1. The n radiation modes behaved in
this transmission line can be modeled by a set of discrete and infinitesimal
LC elements known as concentrated circuit elements (lumped circuit) [27, 14,
13, 15, 16, 12].

The Lagrangean in the system is:

L =
∑
n

[
li2n
2

− q2n
2c

]
, (1)
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Figure 1: Modes of load density vibrations in a transmission line in the
schematic model for spatially located control in time did not continue.

where c is the capacitance and l is the auto inductance of n - this is the mode
of the transmission line. In this case, the temporal variation of the load at
the n node of the circuit is given by q̇n = in−1 − in and in = −

∑n
m=1 ˙qm is

the current at the node. Substituting in Lagrangean (1), we have

L =
∑
n

[
l(
∑n

m=1 q̇m)2

2
− q2n

2c

]
. (2)

As usual in this type of system we will make use of the infinitesimal nature
of these elements (the degrees of freedom of the system) to take the equation
(2) into the continuum. We define the variable

u(x, t) =

∫ x

−L
2

dx
′
q(x

′
, t) (3)

where q(x) is the linear density of charge. Making the substitutions:

m=1∑
n

qm(t) → u(x, t), qn(t) → q(x, t) =
∂u

∂x
,
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one-dimensional Lagrangean density is written

L =
lu̇2

2
− 1

2c

[
∂u

∂x

]2
. (4)

Here c and l are transformed into linear capacitance density and transmission
line inductance, respectively. Applying Euler-Lagrange to (4), we obtain

1

c

∂2u

∂x2
− l

∂2u

∂t2
= 0, (5)

where 1/
√
lc is the velocity of the wave propagation. For our present problem,

we will consider the wave equation with dimensionless velocity 1/
√
lc = 1,

and simplifications of annotations for

∂2u

∂x2
≡ uxx,

and

∂2u

∂t2
≡ utt.

3. Statement of the problem
The research about controllability of the wave equation has been the sub-

ject of study by many authors in the last years. We encourage the reading of
the surveys due to Cui et al. [4]. In this article we study the controllability of
this equation by the view of a multiobjective problem.

More precisely, let T > 0.Given k ∈ (0, 1), set αk(t) = 1+kt, for t ∈ (0, T ).
Let us consider the non-cylindrical domain constructed as in [10] given by:

Q̂ =
{
(x, t) ∈ R2; 0 < x < αk(t), t ∈ (0, T )

}
,

with lateral boundary defined by Σ̂ = Σ̂0 ∪ Σ̂∗
0, where

Σ̂0 = {(0, t); t ∈ (0, T )} and Σ̂∗
0 = Σ̂\Σ̂0 = {(αk(t), t); t ∈ (0, T )}.

Note that the domain grows linearly in time (function alpha). We denote by
Ωt and Ω0 the intervals (0, αk(t)) and (0, 1) respectively, and consider the
controlled string equation in the domain Q̂:

utt − uxx = 0 in Q̂,

u(x, t)
∣∣∣
Σ̂0

= w̃(t) and u(x, t)
∣∣∣
Σ̂∗

0

= 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω0,

(6)



P. P. de Carvalho, I. P. Jesus, O. P. de Sá Neto 111

with u the state, w̃ is the control, and (u0(x), u1(x)) ∈ L2(Ω0)×H−1(Ω0) are
initial data.

From the physics point of view, Equation (6) represents the motion of a
string where an endpoint is fixed and the other one is moving and the constant
k is called the speed of the moving endpoint.

We consider
Σ̂0 = Σ̂1 ∪ Σ̂2, (7)

and
w̃ = {w̃1, w̃2}, w̃i = control function in L2(Σ̂i), i = 1, 2. (8)

We can also write

w̃ = w̃1 + w̃2, with Σ̂0 = Σ̂1 = Σ̂2, (9)

so that system (6) can be rewritten as follows:
utt − uxx = 0 in Q̂,

u(x, t)
∣∣∣
Σ̂1

= w̃1(t), u(x, t)
∣∣∣
Σ̂2

= w̃2(t) and u(x, t)
∣∣∣
Σ̂\Σ̂0

= 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω0.

(10)

Let us consider w̃1 as being the “main” control (the leader), w̃2 as the
follower, in Stackelberg terminology and u = u(x, t) the solution of (10). We
will also introduce the secondary cost functional

J̃2(w̃1, w̃2) =
1

2

∫∫
Q̂
(u(w̃1, w̃2)− u2)

2 dx dt+
σ

2

∫
Σ̂2

w̃2
2 dΣ̂, (11)

and the main cost functional

J̃(w̃1) =
1

2

∫
Σ̂1

w̃2
1 dΣ̂, (12)

where σ is a positive constant and u2 is a given function in L2(Q̂).
By Milla Miranda [25], for 0 < k < 1, any u0 ∈ L2(Ω0), u1 ∈ H−1(Ω0) and

w̃i ∈ L2(Σ̂i), i = 1, 2, Equation (10) admits a unique solution in the sense of a
transposition, with u belongs C

(
[0, T ];L2(Ωt)

)
∩C1

(
[0, T ];H−1(Ωt)

)
. Hence,

the cost functionals J̃2 and J̃ above, are well defined.
The Stackelberg-Nash is described as follows: If the leader w̃1 makes a

choice, then the follower w̃2 makes also a choice, depending on w̃1, which
minimizes the cost J̃2, that is,

J̃2(w̃1, w̃2) = inf
ŵ2∈L2(Σ̂2)

J̃2(w̃1, ŵ2). (13)

4. Optimality systems The main goal in this section is to presents the
optimality systems for the leader and follower controls. Initially, we consider
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Uad = {(u, w̃2) ∈ L2(Q) × L2(Σ̂2); u solution of (10)}, and J̃2 : Uad −→ R
defined by (11). It is easy see that Uad is a nonempty closed convex sub-
set of L2(Q) × L2(Σ2), and J̃2 is weakly coercive, weakly sequentially lower
semicontinuous and strictly convex. Therefore, there exists a unique solution
w̃2 = F(w̃1) of problem

inf
w̃2∈L2(Σ̂2)

J̃2(w̃1, w̃2). (14)

After a short computation of the Gateaux derivative of the functional (11),
we obtain the Euler - Lagrange equation for problem (14) given by∫ T

0

∫
Ωt

(u− u2)ûdxdt+ σ

∫
Σ̂2

w̃2ŵ2d Σ̂ = 0, ∀ ŵ2 ∈ L2(Σ̂2), (15)

where û is solution of the following system
ûtt − ûxx = 0 in Q̂,

û
∣∣∣
Σ̂1

= 0, û
∣∣∣
Σ̂2

= ŵ2 and û
∣∣∣
(Σ̂1∪Σ̂2)

= 0

û(x, 0) = 0, ût(x, 0) = 0, x ∈ Ω0.

(16)

In view (15), it is very natural to introduce the adjoint state defined by
ptt − pxx = u− u2 in Q̂,

p(T ) = pt(T ) = 0, x ∈ Ω{t=T},

p = 0 on Σ̂.

(17)

Multiplying (17) by û and integrating by parts, then from (15) we deduce a
characterization for follower control as follows:

w̃2 = F(w̃1) =
1

σ̃
px on Σ̂2. (18)

From (16), (17) and (18), we consider the optimality system for follower con-
trol given by: 

utt − uxx = 0 in Q̂,

ptt − pxx = u− u2 in Q̂,

u
∣∣∣
Σ̂1

= w̃1, u
∣∣∣
Σ̂2

=
1

σ̃
px and u

∣∣∣
Σ̂\Σ̂0

= 0,

p = 0 on Σ̂,

u(0) = ut(0) = 0, x ∈ Ω0,

p(T ) = pt(T ) = 0, x ∈ Ω{t=T}.

(19)
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Now, following the Stackelberg-Nash strategy, the leader w̃1 wants that
the solutions u and u′, evaluated at time t = T , to be as close as possible
to {u0, u1} ∈ L2(ΩT ) ×H−1(ΩT ). This will be possible if the system (19) is
approximately controllable.

For this, as in [10], we assume that

T >
e

2k(1+k)

(1−k)3 − 1

k
(20)

and
0 < k < 1. (21)

Remark 4.1 In the literature there are several works that approach the time
T given in (20) and the speed of the moving endpoint k as in (21); for more
details see for example [5, 32]. In the case of k = 1, some results have been
obtained in [4]. However, we do not extend the approach developed in this
paper to the case k = 1. On the other hand, in the case k > 1, the moving
boundary is a spacelike surface, on which an initial condition rather than
a boundary condition needs to be imposed. For interested readers on this
subject, we cite for instance [4], [3], and [32].

The next result concerns the approximate controllability with respect to the
leader control. More precisely, we have the following result:

Theorem 4.2 Assume that (20) and (21) hold. Let us consider w̃1 ∈ L2(Σ̂1)
and w̃2 a Nash equilibrium in the sense (13). Then(

u(T ), u′(T )
)
=

(
u(., T, w̃1, w̃2), u

′(., T, w̃1, w̃2)
)
,

where u solves the system (19), generates a dense subset of L2(ΩT )×H−1(ΩT ).

The proof of this theorem is by well known is a direct consequence of Holm-
gren’s Uniqueness Theorem (cf. [19] ) and multiplier method. For additional
discussions see Theorem 4.1 of [10].

Remark 4.3 As can be seen in [10], the income statement above is done
using the decomposition of the solutions in (19)

(u, p) = (up + g, pp + q), (22)

where up, pp, g and q are particular solutions for this system. New systems for
g and q are obtained, and the author consider the following “adjoint systems"
for g and q respectively:

φtt − φxx = ψ in Q̂,

φ = 0 on Σ̂,

φ(T ) = 0, φt(T ) = 0, x ∈ Ω{t=T},

(23)
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and 
ψtt − ψxx = 0 in Q̂,

ψ
∣∣∣
Σ̂1

= 0, ψ
∣∣∣
Σ̂2

=
1

σ
φx and ψ

∣∣∣
Σ̂\Σ̂0

= 0,

ψ(0) = ψt(0) = 0, x ∈ Ω0.

(24)

Finally, with the previous result in hand, we can to deduce an optimality
system for leader control. The result is the following one.

Theorem 4.4 Assume the hypotheses (9), (20) and (21) are satisfied. Then
for {f0, f1} in H1

0 (ΩT )× L2(ΩT ) we uniquely define {φ,ψ, u, p} by

φtt − φxx = ψ in Q̂,

ψtt − ψxx = 0 in Q̂,

utt − uxx = 0 in Q̂,

ptt − pxx = u− u2 in Q̂,

φ = 0 on Σ̂,

ψ
∣∣∣
Σ̂1

= 0, ψ
∣∣∣
Σ̂2

=
1

σ
φx and ψ

∣∣∣
Σ̂\Σ̂0

= 0,

u
∣∣∣
Σ̂1

= −φx, u
∣∣∣
Σ̂2

=
1

σ
px and u

∣∣∣
Σ̂\Σ̂0

= 0,

p = 0 on Σ̂,

φ(., T ) = 0, φt(., T ) = 0 in Ω{t=T},

u(0) = ut(0) = 0 in Ω0,

ψ(0) = ψt(0) = 0 in Ω0,

p(T ) = pt(T ) = 0 in Ω{t=T}.

(25)

The optimal leader is given by

w̃1 = −φx on Σ̂1,

where φ corresponds to the solution of first equation in the system (25).

The proof of this theorem is based on an argument duality due to Fenchel
and Rockafellar [31] (for more details see Theorem 5.1 of [10]).

5. Main results, complete discretization and algorithm
In this section, we employ a methodology combining finite differences for

the time discretization, finite elements for the space approximation, and a
fixed point algorithm for the iterative solution of the discrete control problem
for (25), using ideas similar to those developed in [2], [8] and [29].
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Initially, introduce the notation

Vi :=

{
w̃i ∈ L2(Σ̂i)

∣∣∣ i = 1, 2

}
and V = V1 × V2 ,

where V := L2(Σ̂0).
As consequence of anterior results we have that: for all σ > 0 (sufficiently

large), exists an unique equilibrium (w̃1, w̃2) ∈ V for the functionals J̃1 and
J̃2 , satisfying the Theorem 4.4. We can reduce (25) to a finite-dimensional
problem via FEM, discretizing the problem in time and space. With this,
we will seek approximate solutions un+1

h and controls
(
w̃n+1
1 , w̃n+1

2

)
in the

approximate domain Q̂M
h (to Q̂) described below.

5.1. Approximation in time

We consider temporal discretization for [0, T ], with the time step defined
by ∆t := T/M , whereM is a large positive integer. Then, if we set tm := m∆t,
we have

0 < t1 < t2 < · · · < tM = T.

Now, we denote the time approximation for control spaces V1 and V2 respec-
tively by

V ∆t
1 := L2(Σ̂1)

M and V ∆t
2 := L2(Σ̂2)

M ,

and for state space W , by:

W∆t or WM .

Accordingly, we can interpret the elements of V ∆t
i as controls in Vi that are

piecewise constant in time.

5.2. Approximation in space

Remember that for each t ∈ [0, T ], Ωt is a subdomain of R, Q̂ := Ωt ×
[0, T ], the boundary Σ̂ := Σ̂1 ∪ Σ̂2, and the controls (in the restrictions of
their domains) indicated by w̃1

∣∣∣
Σ̂1

and w̃2

∣∣∣
Σ̂2

.

Consider Th the triangulation of the domain Q̂. Denote by Q̂h a discretiza-
tion for Q̂, where h is the maximum size of the edges of the triangles, with
Q̂h represented by

Q̂h =
⋃

TK∈Th
TK .

As Q̂ is a polygonal region, Q̂h = Q̂. In Fig. 2 below, we present the mesh
generated using the Freefem++ software (v. [20]). The boundary domain
must be described analytically as a parameterization. To generate the mesh,
the number of points on the edge Σ̂ is considered, then the software adds
internal points by subdividing the edges, generating the process of creating
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the triangulation, based on the Delaunay-Voronoi algorithm. Triangulation
accuracy is controlled by the size of the closest boundary edges.

Figure 2: The domain Q̂ = Q̂M
h . As we modify the values of final time T , the

Q̂M
h domain and its entire triangular structure are updated, thus obtaining

new meshes in the finite element discretization. Further on, we present in
Figures 6-8 different Q̂M

h domains.

Thus, the solution spaces

W =

{
w ∈ L∞(0, T ;H1

0 (Ωt)) : wt ∈ L∞(0, T ;L2(Ωt))

}
can be discretized in time and space, for the construction of approximate
solutions via finite elements, which will be given by W∆t

h , where

W∆t
h := (Wh)

M , Wh :=

{
z ∈ C0(Ωt) : z

∣∣∣
K

∈ P1(K) ∀K ∈ Th
}

with
W∆t

h,0 = (Wh,0)
N , Wh,0 =

{
z ∈Wh : z

∣∣∣
Σ
= 0

}
,

and P1(K) the space of polynomial functions (piecewise linear continuous
finite element) of degree ≤ 1. The dim(Wh) = Nh, where Nh is the number
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of vertices of Th.
Similarly, an approximation for the control spaces V ∆t

i discretized in time
and space will be given by V ∆t

i,h , defined as follows:

V ∆t
i,h = (Vi,h)

M , Vi,h :=

{
z ∈ C0(Σ̂i) : z

∣∣∣
K

∈ P1(K) ∀K ∈ Σ̂i

}
;

then, we set V ∆t
h := V ∆t

1,h × V ∆t
2,h .

In (25) the state equation (in u and ψ) and the adjoint systems (in p
and φ) can be approximated in time and space incorporating (for instance)
implicit Euler finite differences in time and spatial P1-Lagrange finite element
techniques. That allows us to compute a state u∆t

h and two adjoint states p∆t
h

and φ∆t
h for each control pair w̃ = (w̃1, w̃2) ∈ V ∆t

h .
In accordance with those definitions, we can approximate the problem to

obtain a pair control (w̃1, w̃2) ∈ V by a finite dimensional problem:

∂J̃∆t
1,h

∂w̃1
(w̃1, w̃2) = 0,

∂J̃∆t
2,h

∂w̃2
(w̃1, w̃2) = 0,

(26)

where the J̃∆t
i,h are the finite-dimensional versions of the J̃i induced by time

and space approximations.

5.3. Fixed–Point Method for the Discretized Problem

To model the problem using Freefem++, one must know the variational
formulation for the problem. As we will use an iteration process in time, we
will present the algorithm for the approximate problem already considering
its variational formulation and its total discretization. Now, we can solve the
approximate formulation (26) for a the equivalent problem using the fixed–
point algorithm as follows:

ALGORITHM:

a) Choose w̃0 := (w̃1,0, w̃2,0) ∈ V ∆t
h (where w̃i,0 := w̃i(0) ∈ V ∆t

i,h ) and
introduce an approximation u0,h ∈Wh,0 to u0.

b) Then, for given n ≥ 0, compute the approximate state unh by solving

un,0h = uh,0 , un,1h = un,0h + (∆t) · uh,1 ,∫
Ωt

(
1

(∆t)2
(
un,m+1
h − 2un,mh + un,m−1

h )z +∇un,m+1
h · ∇z

)
dx = 0 ,

∀z ∈Wh,0, un,m+1
h ∈Wh,0, m = 1, ...,M − 1,

(27)
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and assuming that un,mh and u2(x, tm) are known, compute the approx-
imate adjoint states pn,mh (for un,mh ), by solving

pn,Mh = 0 , pn,M−1
h = 0∫

Ωt

(
1

(∆t)2
(
pn,m+1
h − 2pn,mh + pn,m−1

h )z +∇pn,m−1
h · ∇z

)
dx

=

∫
Ωt

(un,m−1
h − u2(x, t

m−1)) · z dx

∀z ∈Wh,0, pn,mh ∈Wh,0, m =M − 1, M − 2, ... , 1

(28)

c) Now, for given n ≥ 0 consider known
(
ψn
h(0), ψ

n
1,h(0)

)
∈ W∆t

h,0 ×W∆t
h,0 an

approximation to (ψ(0), ψ′(0)) ∈W×W , and compute the approximate
state ψn

h to ψ, solving

ψn,0
h = ψ1,0

h = 0 , ψn,1
h = ψn,0

h + (∆t) · ψh,1 ,∫
Ωt

(
1

(∆t)2
(
ψn,m+1
h − 2ψn,m

h + ψn,m−1
h )z +∇ψn,m+1

h · ∇z
)
dx = 0 ,

∀z ∈Wh,0, ψn,m+1
h ∈Wh,0, m = 1, ...,M − 1,

(29)
in addition compute the approximate adjoint states φn,m

h , with m =

M − 1, M − 2, . . . , 1 (where φn,M
h and φn,M−1

h are known), by

φn,M
h = 0 , φn,M−1

h = 0∫
Ωt

(
1

(∆t)2
(
φn,m+1
h − 2φn,m

h + φn,m−1
h )z +∇φn,m−1

h · ∇z
)
dx

=

∫
Ωt

ψn,m−1
h · z dx

∀z ∈Wh,0, φn,m
h ∈Wh,0, m =M − 1, M − 2, ... , 1

(30)
and, finally, compute

w̃n+1
1 = −φn

x

∣∣∣∣
Σ̂1

(31)

and

w̃n+1
2 =

1

σ
pnx

∣∣∣∣
Σ̂2

, (32)

with σ-fixed.
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6. Illustrative Numerical Examples Thanks to the results obtained
in the anterior sections and theoretical results obtained in [10], we can con-
sider for each w̃1, the Nash equilibrium w̃2 associated to solution u of (10).
The computations have been performed using Freefem++, which is a high-
performance free software designed to solve problems of PDEs (v. [20])1. The
results of numerical calculation are presented in the table 1, 2 and the table 3.
The graphic representations are obtained in combination with MatLab and
they are presented in the figures 8-5. For all experiments the number of time
steps in M = 100 (that gives ∆t = T/M). We consider u2 = 10 fixed, the
initial conditions u

∣∣∣
Ω0

are given by u(0) = 0 and u′(0) = 0. All initial and
boundary conditions were programmed considering the information provided
in the system (25).

We consider the interval Σ̂0 = (0, T ) as control domain, where Σ̂1 =
(T/2, T ) and Σ̂2 = (0, T/2). As the time for the problem must satisfy (20),
with k defined by (21), we define Tc as time of control (with T > Tc) and k
are fixed by

Tc =
e

2k(1+k)

(1−k)3

k
and k =

1

4
.

Now, we present several tests for the algorithms in the section (5.3). Con-
sidering ε = 10−5 and the stopping criterion is determined by:

∥(w̃n+1
1 , w̃n+1

2 )− (w̃n
1 , w̃

n
2 )∥

∥(w̃n+1
1 , w̃n+1

2 )∥
≤ ε.

7. Conclusions We present a numerical and computational approach
for the hierarchical control problem of the wave equation, considering the
moving boundary and the controls that act on a piece of the boundary. A
combination of the Finite Element and the Finite Difference Method is used
to build approximate solutions to the time-dependent problem, adding a fixed
point algorithm to evaluate the computational convergence of the results ob-
tained during the evolution process. With this, we established the feasibility
of simulating the problems in which hierarchical control acts on the mobile
border. We use the proven results in [10] to ensure the validity of the results
that support the numerical part developed.

8. Additional comments
The same ideas and techniques can be adapted and applied to the compu-

tation of equilibrium problems and hierarchical control in many recent other
situations: In [6], numerical results are presented in Nash equilibria for prob-
lems in dimension 3; in [1] null controllability for hierarchical problems with

1As its name implies, it is a free software based on the Finite Element Method (more
details are available at https://freefem.org/).

https://freefem.org/
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Figure 3: Domain for k = 1/4 and T = 2Tc. Nb of vertices = 2916, Nb of
triangles = 5526, Border length = 41.936 .

Figure 4: Domain for k = 1/4 and
T = 5Tc. Nb of vertices = 2319, Nb
of triangles = 4332, Border length =
202.484 .

Figure 5: Domain for k = 1/4 and
T = 10Tc. Nb of vertices = 2236, Nb
of triangles = 4166, , Border length =
403.167 .

dynamic boundary; for hierarchical control in problems with a moving bound-
ary (see [24], [11] and [9]); hierarchic control for parabolic systems (see [21],
[23] and [22]) and Nash equilibria in single-objective optimization problems
(see [28]). It can also be extended into similar analyses for other types of hier-
archical control problems, such as Stokes, Navier-Stokes, Schrödinger (in [17]
some results are presented to Navier-Stokes equations and [18] to Schrödinger
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Figure 6: Final state for the approximate solution un in the time T = Tc.
Iterates to the stopping criterion: 6.

Figure 7: Final state for the approx-
imate solution un in the time T =
5 · Tc. Iterates to the stopping crite-
rion: 7.

Figure 8: Final state for the approx-
imate solution un in the time T =
10Tc. Iterates to the stopping crite-
rion: 8.

Final states with change T = Tc, 2 · Tc, . . . , 10 · Tc , fixed u2 = 10 and
σ = 102. The maximum number of iterates = 100.

equation).
Acknowledgments: This work was supported by Universidade Estadual do Piauí, SIGPROP-
UESPI Project No 0646/2021 and EDITAL FAPEPI/ MCT/ CNPq No 007/2018: Re-
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Figure 9: The number of iterations needed for convergence criterion when
σ = 10, 102, ..., 1010.

Figure 10: Final state in T = Tc and
σ = 10.

Figure 11: Final state in T = Tc and
σ = 1010.

was partially supported by grants from CNPq/Brazil [Grant: 307488/2019-5].

A. Tables
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Time ∥u− un∥L2(Q̂) < ε
2∑

i=1

∥w̃i − w̃n
i ∥L2(Σ̂) < ε Iterates

Tc 4.23731 · 10−6 8.94841 · 10−8 6
2 · Tc 1.39288 · 10−5 6.04906 · 10−6 7
3 · Tc 5.38065 · 10−5 3.47866 · 10−7 7
4 · Tc 9.46165 · 10−5 7.61072 · 10−7 7
5 · Tc 9.84504 · 10−5 9.49046 · 10−7 7
6 · Tc 2.22432 · 10−5 1.62926 · 10−7 8
7 · Tc 8.91691 · 10−5 6.78541 · 10−7 8
8 · Tc 2.50240 · 10−4 1.41019 · 10−6 8
9 · Tc 4.04092 · 10−4 1.85044 · 10−6 8
10 · Tc 5.41312 · 10−4 2.14904 · 10−6 8

Table 1: Domains construction in function of time T = Tc. The maximum
number of iterates = 100, k = 1/4, σ = 102 and u2 = 10 fixed.

Time N.◦ Vertices N.◦ Triangles Border Length
Tc 2916 5526 41.936
2 · Tc 2580 4854 82.073
3 · Tc 2411 4516 122.210
4 · Tc 2365 4424 162.347
5 · Tc 2319 4332 202.484
6 · Tc 2309 4312 242.620
7 · Tc 2316 4326 282.757
8 · Tc 2273 4240 322.894
9 · Tc 2246 4186 363.031
10 · Tc 2236 4166 403.167

Table 2: Domains construction in function of time T = Tc. The maximum
number of iterates = 100, k = 1/4, σ = 102 and u2 = 10 fixed.
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O obliczeniowych zadaniach przy wyznaczaniu sterowań
hierarchicznych dla jednowymiarowej linii przesyłowej
P. P. de Carvalho, I. P. de Jesus i O. P. de Sá Neto

Streszczenie W tym artykule, motywowanym problemem fizycznym, badamy pewne
aspekty numeryczne i obliczeniowe problemu sterowalności hierarchicznej w jednowy-
miarowym równaniu falowym w domenach z ruchomą granicą. Niektóre sterowania
są na brzegu i definiują strategię równowagi między nimi, biorąc pod uwagę stero-
wania lidera i naśladowcę. W związku z tym wprowadziliśmy koncepcję sterowań
hierarchicznych w celu rozwiązania tego problemu i przyporządkowaliśmy strategię
Stackelberga między tymi strategiami. Opisane tutaj metody numeryczne składają
się z kombinacji następujących elementów: metoda elementów skończonych (MES)
dla aproksymacji przestrzennej; metoda różnic skończonych (FDM) do dyskretyzacji
czasu i algorytm stałoprzecinkowy do rozwiązania problemu całkowitego sterowania
dyskretnego. Programowanie danych i symulacje komputerowe wykonujemy w Fre-
eFem++, a dla lepszej prezentacji eksperymentów używamy Matlaba.

2020 Klasyfikacja tematyczna AMS (2010): Primary: 93B05; Secondary: 93C05,
93C25, 65N06..

Słowa kluczowe: sterowalność; strategia Stackelberga; linia długa; równania telegra-
fistów; symulacja numeryczna .
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