PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Scenario planning as a new application area for TOPSIS

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
TOPSIS is a well-known approach applied to multi-criteria decision-making under certainty (M-DMC). However, recently, some analogies between this domain and scenario-based one-criterion decision-making under uncertainty (1-DMU) have been revealed in the literature. Thus, the similarities aforementioned give the possibility to adjust TOPSIS to another area. The goal of the paper is to create a new method for problems with non-deterministic parameters on the basis of TOPSIS ideas. In the suggested approach criteria weights (declared within TOPSIS) are replaced by subjective chances of occurrence which are estimated for each scenario. The novel method has an advantage over existing classical decision rules designed for 1-criterion decision-making under uncertainty since within this procedure each payoff connected with a given option is compared with the positive and negative-ideal solutions.
Rocznik
Strony
23--34
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
  • Department of Operations Research and Mathematical Economics, Pozna´n University of Economics and Business, Poznań, Poland
Bibliografia
  • [1] Aras, S., Kocakoc, I., and Polat, C. Comparative study on retail sales forecasting between single and combination methods. Journal of Business Economics and Management 18, 5 (2017), 803–832.
  • [2] Assunção, L., Santos, A. C., Noronha, T. F., and Andrade, R. Improving logic-based benders’ algorithms for solving min-max regret problems. Operations Research and Decisions 31, 2 (2021), 23–57.
  • [3] Borges, W. V., Lima Junior, F. R., Peinado, J., and Ribeiro Carpinetti, L. C. R. A hesitant fuzzy linguistic TOPSIS model to support supplier segmentation. Journal of Contemporary Administration (RAC) 26, 6 (2022), 210133.
  • [4] Charnes, A., and Cooper, W. W. Management Models and Industrial Applications of Linear Programming. John Wiley and Sons, New York, 1961.
  • [5] Charnes, A., Cooper, W. W., and Ferguson, R. O. Optimal estimation of executive compensation by linear programming. Management Science 1, 2 (1955), 138–151.
  • [6] Chermack, T. J., Lynham, S. A., and Ruona, W. E. A. A review of scenario planning literature. Future Research Quaterly 17, 2 (2001), 7–31.
  • [7] Dominiak, C. Multi-criteria decision aid under uncertainty. Multiple Criteria decision-making 1 (2006), 63–81.
  • [8] Durbach, I. N., and Stewart, T. J. Modeling uncertainty in multi-criteria decision analysis. European Journal of Operational Research 223, 1 (2012), 1–14.
  • [9] García-Cascales, M. S., and Lamata, M. T. On rank reversal and TOPSIS method. Mathematical and Computer Modelling 56, 5-6 (2012), 123–132.
  • [10] Gaspars-Wieloch, H. A new application of the goal programming – the target decision rule for uncertain problems. Journal of Risk and Financial Management 13, 11 (2020), 280.
  • [11] Gaspars-Wieloch, H. Critical analysis of classical scenario-based decision rules for pure strategy searching. Scientific Papers of Silesian University of Technology. Organizations and Management Series 149 (2020), 155–165.
  • [12] Gaspars-Wieloch, H. From the interactive programming to a new decision rule for uncertain one-criterion problems. In Proceedings of the 16th International Symposium on Operational Research, SOR ’21 (Bled, 2021), S. Drobne, L. Z. Stirn, M. K. Borštnar, J. Povh, and J. Zerovnik, Eds., Slovenian Society Informatika, Ljubljana, pp. 669–674.
  • [13] Gaspars-Wieloch, H. On some analogies between one-criterion decision-making under uncertainty and multi-criteria decisionmaking under certainty. Economic and Business Review 7, 2 (2021), 17–36.
  • [14] Gaspars-Wieloch, H. Possible new applications of the interactive programming based on aspiration levels – case of pure and mixed strategies. Central European Journal of Operations Research (2022), doi.org/10.1007/s10100-022-00836-y.
  • [15] Hayashi, T. Regret aversion and opportunity dependence. Journal of Economic Theory 139, 1 (2008), 242–268.
  • [16] Hurwicz, L. A Criterion for Decision-Making under Uncertainty. Technical Report 355, Cowles Commission, 1952.
  • [17] Hwang, C.-L., and Yoon, K. Multiple Attribute Decision-making: Methods and Applications. Springer-Verlag, Berlin, 1981.
  • [18] Hwang, C.-L., Lai, Y.-J., and Lui, T.-Y. A new approach for multiple objective decision-making. Computers and Operations Research 20, 8 (1993), 889–899.
  • [19] Kacprzak, D. A doubly extended TOPSIS method for group decision-making based on ordered fuzzy numbers. Expert Systems with Applications 116 (2019), 43–254.
  • [20] Keshavarz-Ghorabaee, M., Amiri, M. and Zavadskas, E. K. A comparative analysis of the rank reversal phenomenon in the EDAS and TOPSIS methods. Economic Computation and Economic Cybernetics Studies and Research 52, 3 (2018), 121–134.
  • [21] Montibeller, G., and Franco, A. Multi-criteria decision analysis for strategic decision-making. In Handbook of multicriteria analysis, applied optimization, vol. 103 of Applied Optimization book series, C. Zopounidis and P. M. Pardalos, Eds., Springer-Verlag, Berlin, 2010, pp. 25–48.
  • [22] Porter, M. E. Competitive Advantage: Creating and Sustaining Superior Performance. The Free Press, NY, 1985.
  • [23] Rehman, S., Khan, S. A., and Alhems L. M. Application of TOPSIS approach to multi-criteria selection of wind turbines for on-shore sites. Applied Sciences 10, 21 (2020), 7595.
  • [24] Roszkowska, E. Multi-criteria decision-making models by applying the TOPSIS method to crisp and interval data. Multiple Criteria decision-making 6 (2011), 200–230.
  • [25] Roszkowska, E., Filipowicz-Chomko, M., and Wachowicz, T. Using individual and common reference points to measure the performance of alternatives in multiple criteria evaluation. Operations Research and Decisions 30, 3 (2020), 77–96.
  • [26] Roszkowska, E., and Kacprzak, D. The fuzzy saw and fuzzy TOPSIS procedures based on ordered fuzzy numbers. Information Sciences 369 (2016), 564–584.
  • [27] Roszkowska, E., Kusterka-Jefmańska, M., and Jefmański, B. Intuitionistic fuzzy TOPSIS as a method for assessing socioeconomic phenomena on the basis of survey datas. Entropy 23, 5 (2021), 563.
  • [28] Roszkowska, E., and Wachowicz, T. The impact of decision-making profiles on the consistency of rankings obtained by means of selected multiple criteria decision-aiding methods. Econometrics Ekonometria 23, 2 (2019), 9–14.
  • [29] Rudnik, K., and Kacprzak, D. Fuzzy TOPSIS method with ordered fuzzy numbers for flow control in a manufacturing system. Applied Soft Computing 52 (2017), 1020–1041.
  • [30] Savage, L. The Foundations of Statistics. John Wiley and Sons, New York, 1954.
  • [31] Schoemaker, P. J. H. Multiple scenario development: Its conceptual and behavioral foundation. Management Journal 14, 3 (1993), 193–213.
  • [32] Schoemaker, P. J. H. Scenario planning: A tool for strategic thinking. Sloan Management Review 36, 2 (1995), 25–40.
  • [33] Wald, A. Basic ideas of a general theory of statistical decision rules. In Selected Papers in Statistics and Probability (1955), 1st Ed.,Stanford University Press, pp. 656–668.
  • [34] Yang, W. Ingenious solution for the rank reversal problem of TOPSIS method. Mathematical Problems in Engineering 2020 (2020), 9676518.
  • [35] Yoon, K. A reconciliation among discrete compromise solutions. Journal of the Operational Research Society 38, 3 (1987), 277–286.
  • [36] Ziemba, P., Becker, A., and Becker, J. A consensus measure of expert judgement in the fuzzy TOPSIS method. Symmetry 12, 2 (2020), 204.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0f5744b-aa66-47ec-9b3b-383eec429113
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.