PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Migration of Hazardous Components of Municipal Landfill Leachates into the Environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research on the physical and chemical properties of landfill leachates and migration of its hazardous components into hydrosphere and biosphere is a current problem in the global context. The object of the research is landscape-changing factors of the Lviv municipal landfill (Ukraine). It was defined that the largest part of oil products accumulates in the leachates at the south-western side of the landfill (23.6 mg/dm3) and it is 2.36 times higher than the value of the maximum permissible concentration (MPC) (10 mg/dm3); the most saline leachates with chlorides and sulfites are those accumulating at the foot and at the northwestern side; the phosphate content of the investigated leachate samples was the highest at the foot of the landfill and amounted to 12.8 mg/dm3, which exceeds the MPC (10 mg/dm3) by 1.28 times; high concentration of ammonium nitride was discovered in the leachates at the foot (76.1 mg/dm3) and at the northwestern side (46.3 mg/dm3), which exceeds the MPC (30 mg/dm3) by 2.53 and 1.54 times, respectively; the highest indicators of total iron are typical for basins nearby (at the foot – 68.2 mg/dm3, at the northwestern side – 56.3 mg/dm3) and exceed the MPC norms (2.5 mg/dm3) by 27.28 and 22.52 times, respectively. According to certain indicators, the content of hazardous components in the leachates, which accumulate at the foot and at the northwestern side, exceeds the MPC and is several times higher than in the natural basins at the distance of 800 and 1200 m.
Rocznik
Strony
52--62
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Department of Ecological Safety, Lviv State University of Life Safety, Kleparivska, 35, 79007, Lviv, Ukrain
autor
  • Academy of Sport Education, ul. Jagiellońska 88, 00-001 Warszawa Poland
autor
  • The Main School of Fire Service in Warsaw, Faculty of Civil Safety Engineering, ul. Słowackiego 52/54, 01-629 Warszawa, Poland
  • Department of Ecology and Sustainable Use of Nature, National University „Lviv Polytechnic”, S. Yura, 3/4, 79013, Lviv, Ukraine
  • Department of Ecological Safety, Lviv State University of Life Safety, Kleparivska, 35, 79007, Lviv, Ukraine
  • Department of Administrative-Legal Disciplines, Lviv State University of Internal Affairs, Gorodotska, 26, 79000, Lviv, Ukraine
Bibliografia
  • 1. Christensen T. H., Kjeldsen P., Bjerg P. L., Jensen D. L., Christensen J.B., Baun A., Albrechtsen H.-J., Heron G. 2001. Biogeochemistry of landfill leachate plumes. Applied Geochemistry. 16(7–8). 659–718. https://doi.org/10.1016/S0883–2927(00)00082–2
  • 2. Deng Y., Englehardt J.D. 2006. Treatment of landfill leachate by the Fenton process. Water Research. 40(20). 3683–3694. https://doi.org/10.1016/j.watres.2006.08.009
  • 3. Dmitriev M.T., Kaznina N.I., Pinigina I.A. (1989). Sanitary and chemical analysis of pollutants in the environment. Handbook. Moscow: Chemistry.
  • 4. Fytanidis D.K., Voudrias E.A. 2014. Numerical simulation of landfill aeration using computational fluid dynamics. Waste Management. 34 (4). 804–816. https://doi.org/10.1016/j.wasman.2014.01.008
  • 5. Haydin A.M., Dyakiv V.O., Pohrebennyk V.D., Pashchuk A.V. 2013. Chemical content of the leachate of the Lviv solid waste landfill. Lviv. Geography. 10, 43–49.
  • 6. Heavey M. 2003. Low-cost treatment of landfill leachate using peat. Waste Management. 23 (5). 447–454. https://doi.org/10.1016/S0956–053X(03)00064–3
  • 7. Hlobenko V.A. 2016. Organization of search and rescue and other urgent activities for the consequences of emergency at the solid waste landfill. Modern status of civil protection of Ukraine: perspectives and ways to European integration: materials of 18th Ukrainian scientific and practical conference of rescuers. (pp. 343–344). Kyiv: The State Emergency of Ukraine.
  • 8. Kulikowska D., Klimiuk E. 2008. The effect of landfill age on municipal leachate composition. Bioresource Technology. 99(13). 5981–5985. https://doi.org/10.1016/j.biortech.2007.10.015
  • 9. LGD 211.1.0.009–1994. Hydrosphere. Sampling for determination of content and properties of waste and technical water.
  • 10. LGD 211.1.4.023–1995. Method of photometric determination of nitrite-ions with the Griess reagent in surface and purified wastewaters.
  • 11. LGD 211.1.4.027–1995. Method of photometric determination of ammonium-ions with the Nessler reagent in wastewaters.
  • 12. LGD 211.1.4.027–1995. Method of photometric determination of nitrates with salicylic acid in surface and biologically purified waters.
  • 13. LGD 211.1.4.034–1995. Method of photometric determination of total iron in surface and wastewaters.
  • 14. LGD 211.1.4.039–1994. Method of gravimetrical determination of suspended matters in natural and wastewaters.
  • 15. LGD 211.1.4.042–1995. Method of gravimetrical determination of dry residue (soluble substances) in natural and wastewaters.
  • 16. Lurie Y. 1984. Analytical chemistry of industrial wastewater. Moscow: Chemistry.
  • 17. Malovanyy M., Zhuk V., Sliusar V., Sereda A. 2018. Two stage treatment of solid waste leachates in aerated lagoons and at municipal wastewater treatment plants. Eastern-European Journal of Enterprise Technologies. 1(10). 23–30. https://doi.org/10.15587/1729–4061.2018.122425
  • 18. Mor S., Ravindra K., Dahiya R. P., Chandra A. 2006. Leachate Characterization and Assessment of Groundwater Pollution Near Municipal Solid Waste Landfill Site. Environmental Monitoring and Assessment. 118 (1–3). 435–456. https://doi. org/10.1007/s10661–006–1505–7
  • 19. Popovych V., Stepova K., Prydatko O. 2018. Environmental hazard of Novoyavorivsk municipal landfill. MATEC Web of Conferences 247, 00025. FESE 2018. https://doi.org/10.1051/matecconf/201824700025
  • 20. Renou S., Givaudan J. G., Poulain S., Dirassouyan F., Moulin P. 2008. Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials. 150(3). 468–493. https://doi.org/10.1016/j.jhazmat.2007.09.077
  • 21. Suchecka T., Lisowski W., Czykwin R., Piatkiewicz W. 2006. Landfill leachate: water recovery in Poland. Filtration & Separation. 43 (5). 34–36, 38. https://doi.org/10.1016/S0015–1882(06)70891–6
  • 22. Tulaydan Y., Malovanyy M., Kochubei V., Sakalova H. 2017. Treatment of high-strength wastewater from ammonium and phosphate ions with the obtaining of struvite // Chemistry & Chemical Technology. 11 (4). 463–468. https://doi.org/10.23939/chcht11.04.463
  • 23. Uygur A., Kargi F. 2004. Biological nutrient removal from pre-treated landfill leachate in a sequencing batch reactor. Journal of Environmental Management. 71(1), 9–14. https://doi.org/10.1016/j.jenvman.2004.01.002
  • 24. Vodyanitskii Yu. N. 2016. Biochemical processes in soil and groundwater contaminated by leachates from municipal landfills (Mini review). Annals of Agrarian Science. 14(3), 249–256. https://doi.org/10.1016/j.aasci.2016.07.009
  • 25. Voloshyn P. 2012. Analysis of the influence of the Lviv landfill on the environment. Lviv university herald. Geological Series. 26, 139–147.
  • 26. WDS № 081/12–0116–2003. Method of measurement of mass fraction of oil products with gravimetrical method.
  • 27. Xiaoli C., Shimaoka T., Xianyan C., Qiang G., Youcai Z. 2007. Characteristics and mobility of heavy metals in an MSW landfill: Implications in risk assessment and reclamation. Journal of Hazardous Materials. 144(1–2), 485–491. https://doi.org/10.1016/j.jhazmat.2006.10.056
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0eef1e3-2e9f-425c-9fa9-08c0b3cf99eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.