PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Element enrichment and provenance of the detrital component in Holocene sediments from the western Black Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Concentrations of a large set of major and trace elements, and Sr, Nd and Pb isotope ratios were measured in Holocene sediments cored in the western deep Black Sea in order to unravel: (1) the controls of element enrichment, and (2) sources of the detrital component. The transition of the basin from oxic to euxinic resulted in enrichment or depletion in a number of elements in the deep-sea sediments. Authigenic Fe enrichment appears to depend on the amount of Fe mobilized from the sediment through the benthic redox shuttle mechanism and free H2S in the water column (degree of “euxinization”). Manganese enrichment is controlled by diagenetic reactions within the sediment: the dissolution of Mn minerals, Mn2+ diffusion upward and reprecipitation. Barium enrichment is also controlled by diagenetic reactions, sulfate reduction and methanogenesis, that take place above and below the sulfate-methane transition, respectively. The major part of V, Co, Ni, Cu, Zn, Cr, Mo, Cd and Sb is inferred to have co-precipitated with Fe in the euxinic deep waters and to have been incorporated into authigenic Fe-sulfides. Basin reservoir effect additionally influences the Mo enrichment. The U enrichment is interpreted to have a different origin in the two organic-rich stratigraphic units (II and I). It is inferred to be: (i) at the expense of the U inventory of the deepwater pool and a result of inorganic reduction of U at euxinic conditions in the lower Unit II; and (ii) at the expense of the U inventory of the surface water pool and a result of biogenic uptake and transfer to the sediment by the plankton in the upper Unit I. The high field strength elements are closely linked to the detrital component and their depletion in the organic-rich sediments reflects a dilution of the detrital component by the biogenic one. The enrichments of REE, Sn and Th are likely controlled by adsorption on clay minerals. Sr-Nd-Pb isotope compositions of the alumino-silicate component of the studied sediments are relatively uniform. They are most likely controlled by riverine suspended matter supplied mainly in the NW Black Sea (Danube Delta) and transported southward by marine currents, and to a lesser degree by suspended matter from the small rivers draining SE Bulgaria and NW Turkey. Wind-blown dust from the Sahara Desert appears to have a minor contribution to the alumino-silicate component of the sediments. The slight shift in the Pb isotopes in Unit I upper layers is possibly caused by the addition of anthropogenic Pb.
Słowa kluczowe
Czasopismo
Rocznik
Strony
139--163
Opis fizyczny
Bibliogr. 96 poz., mapa, rys., tab., wykr.
Twórcy
  • Tokyo University of Marine Science and Technology, Konan, Minato-ku, Tokyo, Japan
  • Department of Marine Geosciences, IFREMER, Plouzané, France
  • Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Sofia, Bulgaria
  • Department of Geosciences, Swedish Museum of Natural History, Stockholm, Sweden
  • Institute of Geosciences, Marine Climate Research, University of Kiel, Kiel, Germany
  • Department of Geological Sciences, University of Florida, Gainesville, FL, USA
  • UMR CNRS/UBO 6539 LEMAR, European Institute for Marine Studies, Technopôle Brest-Iroise, Plouzané, France
  • Institute of Oceanology, Bulgarian Academy of Sciences, Varna, Bulgaria
  • UMR CNRS/UBO 6539 LEMAR, European Institute for Marine Studies, Technopôle Brest-Iroise, Plouzané, France
  • Department of Geosciences, Swedish Museum of Natural History, Stockholm, Sweden
Bibliografia
  • [1] Aagaard, P., 1974. Rare earth elements adsorption on clay minerals. Bull. Groupe Franç. Argiles 26 (2), 193-199.
  • [2] Algeo, T. J., Lyons, T. W., 2006. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography 21 (1). art. no. PA1016, 23 pp., https://doi.org/10.1029/2004PA001112.
  • [3] Alici, P., Temel, A., Gourgaud, A., 2002. Pb-Nd-Sr isotope and trace element geochemistry of Quarternary extension-related alkaline magmatism: a case study of Kula region (western Anatolia, Turkey). J. Volcanol. Geoth. Res. 115 (3-4), 487-510, https://doi.org/10.1016/S0377-0273(01)00328-6.
  • [4] Aminot, A., Kérouel, R., 2007. Dosage automatique des nutriments dans les eaux marines: méthodes en flux continu. Ed. Ifremer, Méthodes d’analyse en milieu marin, 188 pp.
  • [5] Anderson, T. F., Raiswell, R., 2004. Sources and mechanisms for the enrichment of highly reactive iron in euxinic Black Sea sediments. Am. J. Sci. 304 (3), 203-233, https://doi.org/10.2475/ajs.304.3.203.
  • [6] Arkhangel’skii, A. D., Strakhov, N. M., 1938. Geologicheskoe stroenie i istoriya razvitiya Chernogo morya (Geological structure and history of the evolution of the Black Sea). Izv. Akad. Nauk S.S.S.R. 10, 3-104.
  • [7] Bahr, A., Lamy, F., Arz, H. W., Kuhlmann, H., Wefer, G., 2005. Late glacial to Holocene climate and sedimentation history in the NW Black Sea. Mar. Geol. 214 (4), 309-322, https://doi.org/10.1016/j.margeo.2004.11.013.
  • [8] Bahr, A., Lamy, F., Arz, H. W., Major, C., Kwiecien, O., Wefer, G., 2008. Abrupt changes of temperature and water chemistry in the late Pleistocene and early Holocene Black Sea. Geochem. Geophy. Geosy. 9 (1). art. no. Q01004, 16 pp., https://doi.org/10.1029/2007GC001683.
  • [9] Barnes, C. E., Cochran, J. K., 1991. Geochemistry of uranium in Black Sea sediments. Deep-Sea Res. 38, S1237-S1254.
  • [10] Bayon, G., German, C. R., Boella, R. M., Milton, J. A., Taylor, R. N., Nesbitt, R. W., 2002. An improved method for extracting marine sediment fractions and its application to Sr and Nd isotopic analysis. Chem. Geol. 187 (3-4), 179-199, https://doi.org/10.1016/S0009-2541(01)00416-8.
  • [11] Berner, R. A. , 1981. Authigenic mineral formation resulting from organic matter decomposition in modern sediments. Fortschrit. Mineral. 59 (1), 117-135.
  • [12] Bojar, A.-V., Dodd, J., Seghedi, I., 2013. Isotope geochemistry (O, H and Sr) of Late Cretaceous volcanic rocks, Haţeg basin, South Carpathians, Romania. J. Geol. Soc. London Spec. Publ. 382, 203-211, https://doi.org/10.1144/SP382.10.
  • [13] Boulègue, J., Lord III, C. J., Church, T. M., 1982. Sulfur speciation and associated trace metals (Fe, Cu) in the porewaters of Great Marsh, Delaware. Geochim. Cosmochim. Acta 46 (3), 453-464, https://doi.org/10.1016/0016-7037(82)90236-8.
  • [14] Bruque, S., Mozas, T., Rodriguez, A., 1980. Factors influencing retention of lanthanide ions by montmorillonite. Clay Miner. 15 (4), 413-420, https://doi.org/10.1180/claymin.1980.015.4.08.
  • [15] Brzezinski, M. A., 1985. The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J. Phycol. 21 (3), 347-357, https://doi.org/10.1111/j.0022-3646.1985.00347.x.
  • [16] Calvert, S. E., 1990. Geochemistry and origin of the Holocene sapropel in the Black Sea. In: Ittekkot, V., Kempe, S., Michaelis, W., Spitzy, A. (Eds.), Facets of Modern Biogeochemistry. Springer-Verlag, Berlin, 326-352.
  • [17] Calvert, S. E., Batchelor, C. H., 1978. Major and minor element geochemistry of sediments from Hole 379A, Leg 42B, Deep Sea Drilling Project. In: Usher, J. L., Supko, P. (Eds.), Initial Reports of the Deep Sea Drilling Project. U.S. Government Printing Office, Washington, 527-541.
  • [18] Calvert, S. E., Pedersen, T. F., 1993. Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record. Mar. Geol. 113 (1-2), 67-88, https://doi.org/10.1111/10.1016/0025-3227(93)90150-T.
  • [19] Calvert, S. E., Karlin, R. E., 1998. Organic carbon accumulation in the Holocene sapropel of the Black Sea. Geology 26 (2), 107-110, https://doi.org/10.1130/0091-7613(1998)026(0107:OCAITH)2.3.CO;2.
  • [20] Calvert, S. E., Vogel, J. S., Southon, J. R., 1987. Carbon accumulation rates and the origin of the Holocene sapropel in the Black Sea. Geology 15 (10), 918-921, https://doi.org/10.1130/0091-7613(1987)15(918:CARATO)2.0.CO;2.
  • [21] Canfield, D. E., Lyons, T. W., Raiswell, R., 1996. A model for iron deposition to euxinic Black Sea sediments. Am. J. Sci. 296 (7), 818-834, https://doi.org/10.2475/ajs.296.7.818.
  • [22] De Ignacio, C., Muñoz, M., Sagredo, J., Fernández-Santín, S., Johansson, Å., 2006. Isotope geochemistry and FOZO mantle component of the alkaline-carbonatitic association of Fuerteventura, Canary Islands, Spain. Chem. Geol. 232 (3-4), 99-113, https://doi.org/10.1016/j.chemgeo.2006.02.009.
  • [23] Degens, E. T., Ross, D. A., 1972. Chronology of the Black Sea over the last 25,000 years. Chem. Geol. 10 (1), 1-16, https://doi.org/10.1016/0009-2541(72)90073-3.
  • [24] Degens, E. T., Ross, D. A., 1974. The Black Sea - Geology, chemistry, and biology. In: Degens, E. T., Ross, D. A. (Eds.), American Assoc. Petroleum Geolog. Mem. 20. Tulsa, OK, 633 pp.
  • [25] Degens, E. T., Khoo, F., Michaelis, W., 1977. Uranium anomaly in Black Sea sediments. Nature 269 (5629), 566-569, https://doi.org/10.1038/269566a0.
  • [26] DeMaster, D. J., 1981. The supply and accumulation of silica in the marine environment. Geochim. Cosmochim. Acta 45 (10), 1715-1732, https://doi.org/10.1016/0016-7037(81)90006-5.
  • [27] DeMaster, D. J., Nelson, T. M., Harden, S. L., Nittrouer, C. A., 1991. The cycling and accumulation of biogenic silica and organic carbon in Antarctic deep-sea and continental margin environments. Mar. Chem. 35 (1-4), 489-502, https://doi.org/10.1016/S0304-4203(09)90039-1.
  • [28] Dupont, A., Auwera, J. V., Pin, C., Marincea, S., Berza, T., 2002. Trace element and isotope (Sr, Nd) geochemistry of porphyry- and skarn mineralising Late Cretaceous intrusions from Banat, western South Carpathians. Romania. Miner. Deposita 37 (6-7), 568-586, https://doi.org/10.1007/s00126-002-0274-7.
  • [29] Eckert, S., Brumsack, H.-J., Severmann, S., Schnetger, B., März, C., Fröllje, H., 2013. Establishment of euxinic conditions in the Holocene Black Sea. Geology 41 (4), 431-434, https://doi.org/10.1130/G33826.1.
  • [30] Emerson, S., Hedges, J., 2003. Sediment diagenesis and benthic flux. In: Elderfield, H. (Ed.), The Oceans and Marine Geochemistry. Treatise on Geochemistry, 1st edn.. Elsevier, Amsterdam, 293-319.
  • [31] Franke, C., Robin, E., Henkel, S., Kasten, S., Bleil, U., 2009. Iron sulfide minerals in Black Sea sediments. In: EGU General Assembly 2009, Vienna 19-24.04.2009, 10672.
  • [32] Garbe-Schönberg, C.-D., 1993. Simultaneous determination of thirty-seven trace elements in twenty-eight international rock standards by ICP-MS. Geostandard Newslett 17 (1), 81-97, https://doi.org/10.1111/j.1751-908X.1993.tb00122.x.
  • [33] Georgiev, S., Marchev, P., Heinrich, C. A., Von Quadt, A., Peytcheva, I., Manetti, P., 2009. Origin of nepheline-normative high-K ankaramites and the evolution of Eastern Srednogorie Arc in SE Europe. J. Petrol. 50 (10), 1899-1933, https://doi.org/10.1093/petrology/egp056.
  • [34] German, C. R., Holliday, B. P., Elderfield, H., 1991. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochim. Cosmochim. Acta 55 (12), 3553-3558, https://doi.org/10.1016/0016-7037(91)90055-A.
  • [35] Glenn, C. R., Arthur, M. A., 1985. Sedimentary and geochemical indicators of productivity and oxygen contents in modern and ancient basins: The Holocene Black Sea as the “type”anoxic basin. Chem. Geol. 48 (1-4), 325-354, https://doi.org/10.1016/0009-2541(85)90057-9.
  • [36] Goldberg, E. D., 1954. Marine geochemistry 1. Chemical scavengers of the sea. J. Geol. 62 (3), 249-265, https://www.jstor.org/stable/30080120.
  • [37] Goldberg, E. D., 1961. Chemical and mineralogical aspects of deep-sea sediments. Phys. Chem. Earth 4, 281-302, https://doi.org/10.1016/0079-1946(61)90009-X.
  • [38] Goldberg, E. D., Arrhenius, G. O. S., 1958. Chemistry of Pacific pelagic sediments. Geochim. Cosmochim. Acta 13 (2-3), 153-212, https://doi.org/10.1016/0016-7037(58)90046-2.
  • [39] Goldschmidt, V. M., 1954. Geochemistry. The Clarendon Press, Oxford, 730 pp.
  • [40] Grousset, F. E., Parra, M., Bory, A., Martinez, P., Bertrand, P., Shimmield, G., Ellam, R. M., 1998. Saharan wind regimes traced by the Sr-Nd isotopic composition of the subtropical Atlantic sediments: last glacial maximum vs. today. Quat. Sci. Rev. 17 (4-5), 395-409, https://doi.org/10.1016/S0277-3791(97)00048-6.
  • [41] Guichard, F., Carey, S., Arthur, M. A., Sigurdsson, H., Arnold, M., 1993. Tephra from the Minoan eruption of Santorini in sediments of the Black Sea. Nature 363 (6430), 610-612, https://doi.org/10.1038/363610a0.
  • [42] Haley, B. A., Frank, M., Spielhagen, R. F., Fietzke, J., 2008. Radiogenic isotope record of Arctic Ocean circulation and weathering inputs of the past 15 million years. Paleoceanography 23 (1). art. no. PA1S13, 16 pp., https://doi.org/10.1029/2007PA001486.
  • [43] Hay, B. J., Honjo, S., Kempe, S., Ittekkot, V. A., Degens, E. T., Konuk, T., Izdar, E., 1990. Interannual variability in particle flux in the southwestern Black Sea. Deep Sea Res. 37 (6), 911-928, https://doi.org/10.1016/0198-0149(90)90103-3.
  • [44] Hedge, C. E., Walthall, F. G., 1963. Radiogenic strontium-87 as an index to geologic processes. Science 140 (3572), 1214-1217, https://doi.org/10.1126/science.140.3572.1214-a.
  • [45] Henkel, S., Mogollón, J. M., Nöthen, K., Franke, C., Bogus, K., Robin, E., Bahr, A., Blumenberg, M., Pape, T., Seifert, R., März, C., de Lange, G. J., Kasten, S., 2012. Diagenetic barium cycling in Black Sea sediments - A case study for anoxic marine environments. Geochim. Cosmochim. Acta 88, 88-105, https://doi.org/10.1016/j.gca.2012.04.021.
  • [46] Hirst, D. M., 1974. Geochemistry of sediments from eleven Black Sea cores. In: Degens, E. T., Ross, D. A. (Eds.), The Black Sea - Geology, Chemistry, and Biology. American Assoc. Petroleum Geolog. Mem. 20, Tulsa, OK, 430-455.
  • [47] Hsü, K. J., 1978. Correlation of Black Sea sequences. In: Usher, J. L., Supko, P. (Eds.). Initial Reports of the Deep Sea Drilling Project. Vol. 42, pt. 2. U.S. Gov. Printing Office, Washington, 489-497.
  • [48] Huerta-Diaz, M. A., Morse, J. W., 1992. Pyritization of trace metals in anoxic marine sediments. Geochim. Cosmochim. Acta 56 (7), 2681-2702, https://doi.org/10.1016/0016-7037(92)90353-K.
  • [49] Hurtgen, M. T., Lyons, T. W., Ingall, E. D., Cruse, A. M., 1999. Anomalous enrichments of iron monosulfide in euxinic marine sediments and the role of H2S in iron sulfide transformations: Examples from Effingham Inlet, Orca Basin, and the Black Sea. Am. J. Sci. 299 (7), 556-588, https://doi.org/10.2475/ajs.299.7-9.556.
  • [50] Jochum, K. P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., Hofmann, A. W., 2005. GeoReM: A new geochemical database for reference materials and isotopic standards. Geostand. Geoanal. Res. 29 (3), 333-338, https://doi.org/10.1111/j.1751-908X.2005.tb00904.x.
  • [51] Juul Petersen, A. D., 2004. A geological and petrological study of dikes in the Megalo Vouno volcano complex, Santorini. Department of Geology, Copenhagen Univ., 142 pp.
  • [52] Kamenov, G. D., Dekov, V. M., Willingham, A. L., Savelli, C., Belucci, L. G., 2009. Anthropogenic Pb in recent hydrothermal sediments from the Tyrrhenian Sea: Implications for seawater Pb control on low-temperature hydrothermal systems. Geology 37 (2), 111-114, https://doi.org/10.1130/G25104A.1.
  • [53] Koning, E., Epping, E., Van Raaphorst, W., 2002. Determining biogenic silica in marine samples by tracking silicate and aluminium concentrations in alkaline leaching solutions. Aquat. Geochem. 8 (1), 37-67, https://doi.org/10.1023/A:1020318610178.
  • [54] Konovalov, S. K., Luther III, G. W., Yücel, M., 2007. Porewater redox species and processes in the Black Sea sediments. Chem. Geol. 245 (3-4), 254-274, https://doi.org/10.1016/j.chemgeo.2007.08.010.
  • [55] Kwiecien, O., Arz, H. W., Lamy, F., Wulf, S., Bahr, A., Röhl, U., Haug, G. H., 2008. Estimated reservoir ages of the Black Sea since the Last Glacial. Radiocarbon 50 (1), 99-118, https://doi.org/10.1017/S0033822200043393.
  • [56] Little, S. H., Vance, D., Lyons, T. W., McManus, J., 2015. Controls on trace metal authigenic enrichment in reducing sediments: Insights from modern oxygen-deficient settings. Am. J. Sci. 315 (2), 77-119, https://doi.org/10.2475/02.2015.01.
  • [57] Lyons, T. W., Severmann, S., 2006. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochim. Cosmochim. Acta 70 (23), 5698-5722, https://doi.org/10.1016/j.gca.2006.08.021.
  • [58] Major, C., Ryan, W., Lericolais, G., Hajdas, I., 2002. Constraints on Black Sea outflow to the Sea of Marmara during the last glacial-interglacial transition. Mar. Geol. 190 (1-2), 19-34, https://doi.org/10.1016/S0025-3227(02)00340-7.
  • [59] Major, C. O., Goldstein, S. L., Ryan, W. B. F., Lericolais, G., Piotrowski, A. M., Hajdas, I., 2006. The co-evolution of Black Sea level and composition through the last deglaciation and its paleoclimatic significance. Quat. Sci. Rev. 25 (17-18), 2031-2047, https://doi.org/10.1016/j.quascirev.2006.01.032.
  • [60] McLennan, S .M., 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In: Lipin, B. R., McKay, G. A. (Eds.). Geochemistry and Mineralogy of Rare Earth Elements. Reviews in Mineralogy, 21, 169-200.
  • [61] McManus, J., Berelson, W. M., Klinkhammer, G. P., Kilgore, T. E., Hammond, D. E., 1994. Remobilization of barium in continental margin sediments. Geochim. Cosmochim. Acta 58 (22), 4899-4907, https://doi.org/10.1016/0016-7037(94)90220-8.
  • [62] McManus, J., Berelson, W. M., Klinkhammer, G. P., Johnson, K. S., Coale, K. H., Anderson, R. F., Kumar, N., Burdige, D. J., Hammond, D. E., Brumsack, H. J., McCorkle, D. C., Rushdi, A., 1998. Geochemistry of barium in marine sediments: Implications for its use as a paleoproxy. Geochim. Cosmochim. Acta 62 (21-22), 3453-3473, https://doi.org/10.1016/S0016-7037(98)00248-8.
  • [63] Monnin, C., Wheat, C. G., Dupre, B., Elderfield, H., Mottl, M. M., 2001. Barium geochemistry in sediment pore waters and formation waters of the oceanic crust on the eastern flank of the Juan de Fuca Ridge (ODP Leg 168). Geochem. Geophy. Geosy. 2. (1), art. no. 2000GC000073, 15 pp., https://doi.org/10.1029/2000GC000073.
  • [64] Morford, J. L., Emerson, S., 1999. The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta 63 (11-12), 1735-1750, https://doi.org/10.1016/S0016-7037(99)00126-X.
  • [65] Murray, J. W., Jannasch, H. W., Honjo, S., Anderson, R. F., Reeburgh, W. S., Top, Z., Friederich, G. E., Codispoti, L. A., Izdar, E., 1989. Unexpected changes in the oxic/anoxic interface in the Black Sea. Nature 338 (6214), 411-413, https://doi.org/10.1038/338411a0.
  • [66] Murray, J. W., Top, Z., Özsoy, E., 1991. Hydrographic properties and ventilation of the Black Sea. Deep-Sea Res. 38 (S2), S663-S689, https://doi.org/10.1016/S0198-0149(10)80003-2.
  • [67] Murray, J. W., Stewart, K., Kassakian, S., Krynytzky, M., DiJulio, D., 2007. Oxic, suboxic, and anoxic conditions in the Black Sea. In: Yanko-Hombach, V., Gilbert, A. S., Panin, N., Dolukhanov, P. M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, 1-21.
  • [68] Nardone, C. D., Faure, G., 1978. A study of sedimentation at DSDP Hole 379A, Black Sea, based on the isotopic composition of strontium. In: Usher, J. L., Supko, P. (Eds.), Initial Reports of the Deep Sea Drilling Project. Vol. 42, pt. 2. U.S. Government Printing Office, Washington, 607-615.
  • [69] Neveskii, E. N., 1967. Protsessy osadkoobrazovaniya v pribrezhnoy zone morya (Processes of sediment formation in the near-shore zone of the sea). Nauka, Moscow, 255 pp.
  • [70] Papayannis, A., Balis, D., Amiridis, V., Chourdakis, G., Tsaknakis, G., Zerefos, C., Castanho, D. A., Nickovic, S., Kazadzis, S., Grabowski, J., 2005. Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter - Raman lidar, spectrophotometric and satellite observations in the frame of the EAR-LINET project. Atmos. Chem. Phys. 5 (8), 2065-2079, https://doi.org/10.5194/acpd-5-2075-2005.
  • [71] Pettijohn, F. J., Potter, P. E., Siever, R., 1972. Sand and Sandstone. Springer, New York, 618 pp.
  • [72] Pilskaln, C. H., Pike, J., 2001. Formation of Holocene sedimentary laminae in the Black Sea and the role of the benthic flocculent layer. Paleoceanography 16 (1), 1-19, https://doi.org/10.1029/1999PA000469.
  • [73] Pin, C., Zalduegui, J. F. S., 1997. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks. Anal. Chim. Acta 339 (1-2), 79-89, https://doi.org/10.1029/1999PA000469.
  • [74] Plank, T., Langmuir, C. H., 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145 (3-4), 325-394, https://doi.org/10.1016/S0009-2541(97)00150-2.
  • [75] Ragueneau, O., Dittert, N., Pondaven, P., Tréguer, P., Corrin, L., 2002. Si/C decoupling in the world ocean: is the Southern Ocean different? Deep-Sea Res. Pt. II 49 (16), 3127-3154, https://doi.org/10.1016/S0967-0645(02)00075-9.
  • [76] Ragueneau, O., Regaudie-de-Gioux, A., Moriceau, B., Gallinari, M., Vangriesheim, A., Baurand, F., Khripounoff, A., 2009. A benthic Si mass balance on the Congo margin: Origin of the 4000 m DSi anomaly and implications for the transfer of Si from land to ocean. Deep-Sea Res. Pt. II 56 (23), 2197-2207, https://doi.org/10.1016/j.dsr2.2009.04.003.
  • [77] Raiswell, R., Anderson, T. F., 2005. Reactive iron enrichment in sediments deposited beneath euxinic bottom waters: constraints on supply by shelf recycling. Geol. Soc. London, Spec. Publ. 248 (1), 179-194, https://doi.org/10.1144/GSL.SP.2005.248.01.10.
  • [78] Ross, D. A., 1978. Black Sea stratigraphy. In: Usher, J. L., Supko, P. (Eds.). Initial Reports of the Deep Sea Drilling Project. Vol. 42, pt. 2. U.S. Gov. Printing Office, Washington, 17-26.
  • [79] Ross, D. A., Degens, E. T., 1974. Recent sediments of the Black Sea. In: Degens, E. T., Ross, D. A. (Eds.). The Black Sea - Geology, Chemistry, and Biology. Vol. 20. American Association of Petroleum Geologists Memoir, Tulsa, Oklahoma, 183-199.
  • [80] Ross, D. A., Degens, E. T., MacIlvaine, J., 1970. Black Sea: Recent sedimentary history. Science 170 (3954), 163-165, https://doi.org/10.1126/science.170.3954.163.
  • [81] Ross, D. A., Stoffers, P., Trimonis, E. S., 1978. Black Sea sedimentary framework. In: Usher, J. L., Supko, P. (Eds.). Initial Reports of the Deep Sea Drilling Project. Vol. 42, pt. 2. U.S. Gov. Printing Office, Washington, 359-372.
  • [82] Rudnick, R. L., Gao, S., 2003. Composition of the continental crust. In: Rudnick, R. L. (Ed.). The Crust. Treatise on Geochemistry, Vol. 3, 1st edn.. Elsevier, Amsterdam, 1-64.
  • [83] Ruskov, K., von Quadt, A., Peytcheva, I., Georgiev, S., Strashimirov, S., 2006. Geochemical and Sr-Nd isotope constraints on the Late Cretaceous magmatism in the area of the Zidarovo ore field. In: Annual of the University of mining and geology “St. Ivan Rilski”, Vol. 49, Pt. I, Geology and Geophysiscs, 1-6.
  • [84] Schatz, A.-K., Qi, Y., Siebel, W., Wu, J., Zöller, L., 2015. Tracking potential source areas of Central European loess; examples from Tokaj (HU), Nussloch (D) and Grub (AT). Open Geosci. 7 (1), 678-720, https://doi.org/10.1515/geo-2015-0048.
  • [85] Seghedi, I., Bojar, A.-V., Downes, H., Roşu, E., Tonarini, S., Mason, P., 2007. Generation of normal and adakite-like calcalkaline magmas in a non-subductional environment: An Sr-O- H isotopic study of the Apuseni Mountains neogene magmatic province, Romania. Chem. Geol. 245 (1-2), 70-88, https://doi.org/10.1016/j.chemgeo.2007.07.027.
  • [86] Shotyk, W., Weiss, D., Appleby, P. G., Cheburkin, A. K., Frei, R., Gloor, M., Kramers, J. D., Reese, S., Van Der Knaap, W. O., 1998. History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura Mountains, Switzerland. Science 281 (5383), 1635-1640, https://doi.org/10.1126/science.281.5383.1635.
  • [87] Soulet, G., Ménot, G., Lericolais, G., Bard, E., 2011. A revised calendar age for the last reconnection of the Black Sea to the global ocean. Quat. Sci. Rev. 30 (9-10), 1019-1026, https://doi.org/10.1016/j.quascirev.2011.03.001.
  • [88] Stoffers, P., Müller, G., 1978. Mineralogy and lithofacies of Black Sea sediments Leg 42B Deep Sea Drilling Project. In: Usher, J. L., Supko, P. (Eds.), Initial Reports of the Deep Sea Drilling Project. U.S. Government Printing Office, Washington, 373-411.
  • [89] Stoffers, P., Degens, E. T., Trimonis, E. S., 1978. Stratigraphy and suggested ages of Black Sea sediments cored during Leg 42B. In: Usher, J. L., Supko, P. (Eds.), Initial Reports of the Deep Sea Drilling Project. U.S. Government Printing Office, Washington, 483-487.
  • [90] Takahashi, Y., Tada, A., Shimizu, H., 2004. Distribution pattern of rare earth ions between water and montmorillonite and its relation to the sorbed species of the ions. Anal. Sci. 20 (9), 1301-1306, https://doi.org/10.2116/analsci.20.1301.
  • [91] Tertre, E., Berger, G., Castet, S., Loubet, M., Giffaut, E., 2005. Experimental sorption of Ni2+, Cs+ and Ln3+ onto a montmorillonite up to 150°C. Geochim. Cosmochim. Acta 69 (21), 4937-4948, https://doi.org/10.1016/j.gca.2005.04.024.
  • [92] Todt, W., Cliff, R. A., Hanser, A., Hofmann, A. W., 1996. Evaluation of a 202Pb-205Pb double spike for high-precision lead isotopic analysis. In: Basu, A., Hart, S. R. (Eds.), Earth Processes: Reading the Isotopic Code. Geophys. Monogr. Ser. Vol. 95. American Geophys. Union, 429-437.
  • [93] Újvári, G., Varga, A., Ramos, F. C., Kovács, J., Németh, T., Stevens, T., 2012. Evaluating the use of clay mineralogy, Sr-Nd isotopes and zircon U-Pb ages in tracking dust provenance: An example from loess of the Carpathian Basin. Chem. Geol. 304-305, 83-96, https://doi.org/10.1016/j.chemgeo.2012.02.007.
  • [94] Vance, D., Burton, K., 1999. Neodymium isotopes in planktonic foraminifera: a record of the response of continental weathering and ocean circulation rates to climate change. Earth Planet. Sci. Lett. 173 (4), 365-379, https://doi.org/10.1016/S0012-821X(99)00244-7.
  • [95] Wan, Y. X., Liu, C. Q., 2005. Study on adsorption of rare earth elements by kaolinite. J. Rare Earths 23 (3), 377-381.
  • [96] Weldeab, S., Emeis, K.-C., Hemleben, C., Vennemann, T. W., Schulz, H., 2002. Sr and Nd isotope composition of Late Pleistocene sapropels and nonsapropelic sediments from the Eastern Mediterranean Sea: Implications for detrital influx and climatic conditions in the source areas. Geochim. Cosmochim. Acta 66 (20), 3585-3598, https://doi.org/10.1016/S0016-7037(02)00954-7.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0ec3fb0-6552-40de-ab1a-dba240e0bbd1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.