PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solution of viscous flow in a rectangular region by using the hybrid finite volume scheme

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, a solution to the problem of viscous flow in a rectangular region with two moving parallel walls is obtained by using a hybrid finite volume scheme. The discretized governing equations are solved iteratively, and thereby the flow variables are computed numerically. The results for velocity and pressure in horizontal and vertical directions through the centre of a rectangular region are elucidated. The nature of velocity profiles and pressure for different Reynolds numbers in the horizontal and vertical directions through the geometric centre was analyzed with the help of pictorial representations. The present results are compared with the available benchmark results and we have found that they are not in disagreement.
Rocznik
Strony
17--30
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
  • Department of Mathematics, Faculty of Mathematical Sciences University of Delhi, Delhi-110007, India
Bibliografia
  • [1] Patankar, S.V., & Spalding, D.B. (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass. Transfer, 15, 1787.
  • [2] Ghia, U., Ghia, K.N., & Shin, C.T. (1982). High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387-411.
  • [3] Thompso, M.C., & Ferziger, J.H., (1989). An adaptive multigrid technique for the incompressible Navier-Stokes equations. Journal of Computational Physics, 82(1), 94-121.
  • [4] Bruneau, C.H., & Jouron, C. (1990). An efficient scheme for solving steady incompressible Navier-Stokes equations. Journal of Computational Physics, 89, 389-413.
  • [5] Liakos, A. (2001). Discretization of the Navier-Stokes equations with slip boundary conditions. Numerical Methods for Partial Differential Equations, 17, 26-42.
  • [6] Piller, M., & Stalio, E. (2004). Finite-volume compact schemes on staggered grids. Journal of Computational Physics, 197, 299-340.
  • [7] Hokpunna, A., & Manhart, M. (2010). Compact fourth-order finite volume method for numerical solutions of Navier-Stokes equations on staggered grids. Journal of Computational Physics, 229, 7545-7470.
  • [8] Chung, T.J. (2010). Computational Fluid Dynamics. Second Edition. Cambridge: Cambridge University Press.
  • [9] Biringen, S., & Chow, C.-Y. (2011). An Introduction to Computational Fluid Mechanics by Examples. Hoboken: John Wiley and Sons Inc.
  • [10] Mostafa Ghiaasiaan, S. (2011). Convective Heat and Mass Transfer. New York: Cambridge University Press.
  • [11] Bergman, T.L., Lavine, A.S., Incropera, F.P., & DeWitt, D.P. (2011). Fundamentals of Heat and Mass Transfer. 7th Edition, John Wiley and Sons, USA.
  • [12] Versteeg, H.K., & Malalasekera, W. (2010). An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Edition, India.
  • [13] Srivastava, M.K. (2015). A Numerical Study of Viscous Fluid Flow with Heat Transfer Using Marker and Cell(MAC) and Finite Volume Method, Ph.D. Thesis, University of Delhi, India.
  • [14] Patankar, S.V. (1980). Numerical Heat transfer and Fluid Flow. Washington: Hemisphere/McGraw-Hill.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0ec30da-ad1d-46c6-9299-d5325d1efeb0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.