Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we deal with sequence spaces inclusion equations (SSIE), which are determined by an inclusion where each term is a sum or a sum of products of sets of the form a(T) and f(x)(T) where f maps U+ to itself, and (...), the sequence x is the unknown and T is a given triangle. Here, we determine the set of all sequences x with positive entries such that (…) and (…) where (...). We are led to study, among other things, the inclusion equations (…) and (…) where (…) is the operator of first differences defined by (…) for (…) with (…). The first (SSIE) leads to determine the set of all sequences x such that (…) and (…) implies (…). These results generalize some of the results given in [1].
Wydawca
Czasopismo
Rocznik
Tom
Strony
299--314
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
Bibliografia
- [1] A. Farés, B. de Malafosse, Sequence spaces equations and application to matrix transformations, International Forum 3(19) (2008), 911–927.
- [2] G. H. Hardy, Divergent Series, Oxford University Press, Oxford, 1949. MR 11:25a.
- [3] I. J. Maddox, Infinite Matrices of Operators, Springer-Verlag, Berlin, Heidelberg and New York, 1980.
- [4] B. de Malafosse, Properties of some sets of sequences and application to the spaces of bounded difference sequences of order, Hokkaido Math. J. 31 (2002), 283–299.
- [5] B. de Malafosse, On some BK space, Internat. J. Math. Math. Sci. 28 (2003), 1783–1801.
- [6] B. de Malafosse, Sum of sequence spaces and matrix transformations, Acta Math. Hungar. 113(3) (2006), 289–313.
- [7] B. de Malafosse, V. Rakočević A generalization of a Hardy theorem, Linear Algebra Appl. 421 (2007), 306–314.
- [8] B. de Malafosse, Sum of sequence spaces and matrix transformations mapping in (…), Acta Math. Hungar. 122 (2008), 217–230.
- [9] B. de Malafosse, E. Malkowsky, Sequence spaces and inverse of an infinite matrix., Rend. Circ. Mat. Palermo (2)51 (2002), 277–294.
- [10] B. de Malafosse, E. Malkowsky, Sets of difference sequences of order m, Acta Sci. Math. (Szeged) 70 (2004), 659–682.
- [11] B. de Malafosse, V. Rakočević, Applications of measure of noncompactness in operators on the spaces (...), J. Math. Anal. Appl. 323 (2006), 131–145.
- [12] F. Móricz, B. E. Rhoades, An equivalent reformulation of summability by weighted mean methods, Linear Algebra Appl. 268 (1998), 171–181.
- [13] F. Móricz, B. E. Rhoades, An equivalent reformulation of summability by weighted mean methods, revisited, Linear Algebra Appl. 349 (2002), 187–192.
- [14] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies, 85, 1984.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0e20bd5-ca18-46dd-a311-121ec353e2d8