PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An optimal double inequality between logarithmic and generalized logarithmic means

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we answer the question: for any q > 0 with q ≠ 1, what are the greatest value p1= p1(q) and the least value p2= p2(q) such that the double inequality Lp1(a, b) < [L(aq, bq)]1/q < Lp2(a, b) holds for all a, b > 0 with a ≠ b? Here L(a, b) and Lp(a, b) are the logarithmic and pth generalized logarithmic means of a and b, respectively.
Wydawca
Rocznik
Strony
271--182
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
  • School of Information & Engineering, Huzhou Teachers College, Huzhou 313000, P.R. China
autor
  • School of Mathematics Science, Anhui University, Hefei 230039, P.R. China
autor
  • Department of Mathematics, Huzhou Teachers College, Huzhou 313000, P.R. China
Bibliografia
  • [1] H. Alzer and S.-L. Qiu, Inequalities for means in two variables, Arch. Math. 80 (2003), 201-215.
  • [2] P. S. Bullen, D. S. Mitrinović and P. M. Vasić, Means and Their Inequalities, Kluwer, Dordrecht, 2003.
  • [3] B. C. Carlson, Algorithms involving arithmetic and geometric means, Amer. Math. Monthly 78 (1971), 496-505.
  • [4] B. C. Carlson, The logarithmic mean, Amer. Math. Monthly 79 (1972), 615-618.
  • [5] B. C. Carlson and J. L. Gustafson, Total positive of mean values and hypergeometric functions, SIAM J. Math. Anal. 14 (1983), 389-395.
  • [6] Y.-M. Chu and B.-Y. Long, Best possible inequalities between generalized logarithmic mean and classical means, Abstr. Appl. Anal. (2010), article ID 303286.
  • [7] Y.-M. Chu and W. F. Xia, Inequalities for generalized logarithmic means, J. Inequal. Appl (2009), article ID 763252.
  • [8] C. O. Imoru, The power mean and the logarithmic mean, Internat. J. Math. Math. Sci. 5 (1982), 337-343.
  • [9] P. Kahlig and J. Matkowski, Functional equations involving the logarithmic mean, Z Angew. Math. Mech. 76 (1996), 385-390.
  • [10] T. P. Lin, The power mean and the logarithmic mean, Amer. Math. Monthly 81 (1974), 879-883.
  • [11] B.-Y. Long and Y.-M. Chu, Optimal inequalities for generalized logarithmic, arithmetic, and geometric means, J. Inequal. Appl. (2010), article ID 806825.
  • [12] A. O. Pittenger, Inequalities between arithmetic and logarithmic means, Univ. Beograd Publ. Elektrotehn. Fok. Ser. Mat. Fiz. 678-715 (1980), 15-18.
  • [13] A. O. Pittenger, The logarithmic mean in n variables, Amer. Math. Monthly 92 (1985), 99-104.
  • [14] G. Pólya and G. Szegó, Isoperimetric Inequalities in Mathematical Physics, Prince-ton University Press, Princeton, 1951.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0de2825-ff06-41b0-a92c-f3001a6fb131
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.