PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biosorption of copper(II) by live and dead cells of Yarrowia lipolytica

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Biosorpcja miedzi(II) przez żywe i martwe komórki Yarrowia lipolytica
Języki publikacji
EN
Abstrakty
EN
The biosorption characteristic of Cu(II) using live and dead cells of Yarrowia lipolytica as biosorbents have been investigated in the present research. Biosorption of Cu(II) was enhanced with an increase in pH, temperature, agitation, contact time and initial concentration of the metal ion. It was observed that dead and live biomass efficiently removed copper at 30 min at an initial pH of 5.0. Temperature of 35 oC was optimum at agitation speed of 150 or 200 rpm. For initial copper concentrations of 1–200 mg/dm3, the adsorption data provide an excellent fit to the Langmuir isotherm. The maximum metal uptake values (qmax, mg/g) were found as 9.82 and 12.03 for live and dead biomass, respectively.
PL
W pracy przedstawiono charakterystykę biosorpcji Cu(II) przy użyciu żywych i martwych komórek Yarrowia lipolytica jako biosorbentu. Biosorpcja Cu(II) zwiększała się wraz ze wzrostem pH, temperatury, szybkości mieszania, czasu kontaktu i początkowego stężenia jonu metalu. W pracy zaobserwowano, że żywa i martwa biomasa skutecznie usuwa miedź w ciągu 30 minut, przy początkowym pH 5,0. Temperatura 35 oC była optymalna przy szybkości mieszania wynoszącej 150–200 rpm. Dla początkowego stężenia miedzi z zakresu 1–200 mg/g uzyskane dane biosorpcji były doskonale dopasowane do modelu Langmuira. Maksymalne wartości sorpcji (qmax, mg/g) dla żywej i martwej biomasy wynosiły odpowiednio 9,82 i 12.03.
Rocznik
Strony
875--883
Opis fizyczny
Bibliogr. 20 poz., wykr., rys., tab.
Twórcy
autor
  • Department of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6, 40–035 Opole, Poland, phone: +48 77 401 60 55
Bibliografia
  • [1] Cojocaru C, Diaconu M., Cretescu I, Savić J, Vasić V. Biosorption of copper(II) ions from aqua solutions using dried yeast biomass. Colloids and Surfaces A: Physiochem Eng Aspects. 2009;335:181-188. DOI: 10.1016/j.colsurfa.2008.11.003.
  • [2] Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnol Adv. 2009;27(2):195-226. DOI: 10.1016/j.biotechadv.2008.11.002.
  • [3] Davis TA, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003;37(18):4311-4330. DOI: 10.1016/S0043-1354(03)00293-8.
  • [4] Volesky B. Biosorption and me. Water Res. 2007;41(18):4017-4029. DOI:10.1016/j.watres.2007.05.062.
  • [5] Göksungur Y, Üren S, Güvenç U. Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresource Technol. 2005;96:103-109. DOI: 10.1016/j.biortech. 2003.04.002.
  • [6] Podgorskii VS, Kasatkina TP, Lozovaia OG. Yeasts – biosorbents of heavy metals. Mikrobiol Z. 2004;66:91-103.
  • [7] Bankar AV, Kumar AR, Zinjarde SS. Environmental and industrial applications of Yarrowia lipolytica. Appl Microbiol Biotechnol. 2009;84:847-865. DOI: 10.1007/s00253-009-2156-8.
  • [8] Fickers P, Benetti PH, Wache Y, Marty A, Mauersberger S, Smith MS, Nicaud JM. Hydrophobic substrate utilization by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res. 2005;5:527-543.
  • [9] Shinde NR, Bankar AV, Kumar AR, Zinjarde SS. Removal of Ni(II) ions from aqueous solutions by biosorption onto two strains of Yarrowia lipolytica. J Environ Manage. 2012;102:115-124. DOI: 10.1016/j.jenvman.2012.02.026.
  • [10] Li H, Lin Y, Guan W, Chang J, Xu L, Guo J, Wei G. Biosorption of Zn(II) by live and dead cells of Streptomyces ciscaucasicus strain CCNWHX 72-14. J Hazard Mater. 2010;179:151-159. DOI: 10.1016/j.jhazmat.2010.02.072.
  • [11] Vasquez TGP, Botero AEC, de Mesquita LMS, Torem ML. Biosorptive removal of Cd and Zn from liquid streams with a Rhodococcus opacus strain. Miner Eng. 2007;20(9):939-944. DOI: 10.1016/j.mineng.2007.03.014.
  • [12] Benaďssa H, Elouchdi MA. Biosorption of copper(II) ions from synthetic aqueous solutions by drying bed activated sludge. J Hazard Mater. 2011;194:69-78. DOI: 10.1016/j.jhazmat.2011.07.063.
  • [13] Villaescusa I, Martinez M, Miralles N. Heavy metal uptake from aqueous solution by cork and yohimbe bark waste. J Chem Technol Biotechnol. 2000;75:812-816.
  • [14] Bankar AV, Kumar AR, Zinjarde SS. Removal of chromium(VI) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica. J Hazard Mater. 2009;170(1):487-494. DOI: 10.1016/j.jhazmat.2009.04.070.
  • [15] Sassi M, Bestani B, Hadj Said A, Benderdouche N, Guibal E. Removal of heavy metal ions from aqueous solutions by a local dairy sludge as a biosorbant. Desalination. 2010;262:243-250. DOI: 10.1016/j.desal.2010.06.022.
  • [16] Yao L, Ye ZF, Wang ZY, Ni JR. Characteristic of Pb2+ biosorption with aerobic granular biomass. Chinese Sci Bull. 2008;53(6):948-953. DOI: 10.1007/s11434-008-0103-1.
  • [17] Baysal Z, Çinar E, bulut Y, Alkan H, Dogru M. Equilibrium and thermodynamic studies on biosorption of Pb(II) onto Candida albicans biomass. J Hazard Mater. 2009;161:62-67. DOI: 10.1016/j.jhazmat.2008.02.122.
  • [18] Kratochvil D, Volesky B. Advances in the biosorption of heavy metals. Trends Biotechnol. 1998;16(7):291-300. DOI: 10.1016/S0167-7799(98)01218-9.
  • [19] Machado MD, Janssens S, Soares HMVM, Soares EV. Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: advantages of using dead biomass. J Appl Microbiol. 2009;106:1792-1804. DOI: 10.1111/j.1365-2672.2009.04170.x.
  • [20] Deng S, Ting Y-P. Characterization of PEI-modified biomass and biosorption of Ci(II), Pb(II) and Ni(II). Water Res. 2005;39:2167-2177. DOI: 10.1016/j.watres.2005.03.033.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0ddab2a-0432-4273-968e-edd87c69fcce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.