PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Neural modelling of growth hormone therapy for the prediction of therapy results

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we presented the problem of predicting response to recombinant human growth hormone (GH) treatment in GH-deficient children. Such a prediction can be done by techniques of mathematical modelling and is important because the therapy consists of daily injections and is expensive; thus, it should be administered only to those patients who will, with high probability, benefit from it. Until now, the leading methodological approach to this problem was multiple regression analysis. Several authors demonstrated that it is possible to derive useful models by this method; however, it has some obvious limitations that can be avoided with the use of the proposed neural network approach.
Rocznik
Strony
33--45
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
  • Department of Automatics and Biomedical Engineering, AGH University of Science and Technology, Cracow 30-059, Poland
  • Department of Endocrinology and Metabolic Diseases, Polish Mothers’ Memorial Hospital-Research Institute in Lodz, Lodz 93-338, Poland
  • Department of Automatics and Biomedical Engineering, AGH University of Science and Technology, Cracow 30-059, Poland
Bibliografia
  • 1. Wei C, Gregory JW. Physiology of normal growth. Paediatr Child Health 2009;19:236–40.
  • 2. Wit JM, Ranke MB, Albertsson-Wikland K, Carrascosa A, Rosenfeld RG, Van Buuren S, et al. Personalized approach to growth hormone treatment: clinical use of growth prediction models. Horm Res Paediatr 2013;79:257–70.
  • 3. Ranke MB, Lindberg A. Predicting growth in response to growth hormone treatment. Growth Horm IGF Res 2009;19:1–11.
  • 4. Ranke MB, Lindberg A, Chatelain P, Wilton P, Cutfield W, Albertsson-Wikland K, et al. Derivation and validation of a mathematical model for predicting the response to exogenous recombinant human growth hormone (GH) in prepubertal children with idiopathic GH deficiency. J Clin Endocrinol Metab 1999;84:1174–83.
  • 5. Wikland KA, Kristrom B, Rosberg S, Svensson B, Nierop AF. Validated multivariate models predicting the growth response to GH treatment in individual short children with a broad range in GH secretion capacities. Pediatr Res 2000;48:475–84.
  • 6. Schonau E, Westermann F, Rauch F, Stabrey A, Wassmer G, Keller E, et al. A new and accurate prediction model for growth response to growth hormone treatment in children with growth hormone deficiency. Eur J Endocrinol 2001;144:13–20.
  • 7. Carel JC, Ecosse E, Nicolino M, Tauber M, Leger J, Cabrol S, et al. Adult height after long term treatment with recombinant growth hormone for idiopathic isolated growth hormone deficiency: observational follow up study of the French population based registry. Br Med J 2002;325:70.
  • 8. Ranke MB, Lindberg A, Martin DD, Bakker B, Wilton P, Albertsson-Wikland K, et al. The mathematical model for total pubertal growth in idiopathic growth hormone (GH) deficiency suggests a moderate role of GH dose. J Clin Endocrinol Metab 2003;88:4748–53.
  • 9. de Ridder MA, Stijnen T, Hokken-Koelega AC. Prediction of adult height in growth-hormone-treated children with growth hormone deficiency. J Clin Endocrinol Metab 2007;92:925–31.
  • 10. Dahlgren J, Kristrom B, Niklasson A, Nierop AF, Rosberg S, Albertsson-Wikland K. Models predicting the growth response to growth hormone treatment in short children independent of GH status, birth size and gestational age. BMC Med Inform Decis Making 2007;7:40.
  • 11. Lee PA, Germak J, Gut R, Khutoryansky N, Ross J. Identification of factors associated with good response to growth hormone therapy in children with short stature: results from the ANSWER Program. Int J Pediatr Endocrinol 2011;2011:6.
  • 12. Swiac A, Bilski J. Metoda wstecznej propagacji błędów i jej modyfikacje. In: Duch W, Korbicz J, Rutkowski L, Tadeusiewicz R, editors. Sieci neuronowe. Biocybernetyka i inżynieria biomedyczna 2000, 1st ed. Warszawa: Akademicka Oficyna Wydawnicza Exit, 2000.
  • 13. Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL, Group CP, editors. Parallel distributed processing: explorations in the microstructure of cognition. Cambridge, USA: MIT Press, 1986:318–62.
  • 14. Dreyfus G, editor. Neural networks: methodology and applications. Berlin, Heidelberg: Springer, 2005.
  • 15. Tadeusiewicz R, Chaki R, Chaki N. Exploring neural networks with C#. Boca Raton: CRC Press, Taylor & Francis Group, 2014:298.
  • 16. Prank K, Kloppstech M, Brabant G. Neural networks in the analysis of episodic growth hormone release. Hum Reprod Update 1997;3:215–34.
  • 17. Temurtas F. A comparative study on thyroid disease diagnosis using neural networks. Expert Syst Appl 2009;36:944–9.
  • 18. Omiotek Z, Burda A, Wojcik W. The use of decision tree induction and artificial neural networks for automatic diagnosis of Hashimoto’s disease. Expert Syst Appl 2013;40:6684–9.
  • 19. Mantzaris DH, Anastassopoulos GC, Lymberopoulos DK. Medical disease prediction using artificial neural networks. 8th IEEE International Conference on Bioinformatics and Bioengineering, vols 1 and 2, 2008:793–8.
  • 20. Tomida S, Hanai T, Koma N, Suzuki Y, Kobayashi T, Honda H. Artificial neural network predictive model for allergic disease using single nucleotide polymorphisms data. J Biosci Bioeng 2002;93:470–8.
  • 21. Klencki M, Slowinska-Klencka D, Lewinski A. Multifarious system for quantitative analysis of histologic compartments. Comput Biomed Res 1997;30:165–9.
  • 22. Palczewska I, Niedzwiecka Z. Somatic development indices in children and youth of Warsaw. Med Wieku Rozwoj 2001;5:18–118.
  • 23. Smyczynska J, Lewinski A, Hilczer M. Wskaźniki auksologiczne przydatne w diagnostyce dzieci z niedoborem wzrostu i monitorowaniu skuteczności ich leczenia. Endokrynol Pediatr 2013;12:51–6.
  • 24. Blum WR, Schweitzer R. Insulin-like growth factors and their binding globulins. In: Ranke MB, editor. Diagnostic of endocrine function in children and adolescents, 3rd revised and extended edition. Basel: Karger, 2003:166–99.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0dcb246-30f7-4919-b58a-55b89d7d1f3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.