PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The analysis of the influence of the plane coils geometry configuration on the efficiency of WPT system

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Analiza wpływu geometrii konfiguracji cewek płaskich na sprawność bezprzewodowego przesyłu mocy
Języki publikacji
EN
Abstrakty
EN
The article presents a method and results for numerical and analytical analysis of Wireless Power Transfer (WPT) system consisting of transmitting and receiving plane coils. In the analysis took into account different variants of the WPT system geometry (number of turns, distance between the transmitting-receiving coils). The influence of variable system geometry and the frequency on system efficiency was analysed. The Finite Element Method (FEM) with the using antiperiodicity boundary conditions for the analysis was used. The results obtained by numerical and analytical method indicate at which system parameters wireless energy transfer is possible.
PL
W artykule przedstawiono metody i wyniki analizy numerycznej oraz analitycznej układu Wireless Power Transfer (WPT) złożonego z cewek płaskich (nadawczych i odbiorczych). W analizie uwzględniono różne warianty geometrii układu WPT (liczba zwojów, odległość między cewkami). Analizowano wpływ geometrii układu oraz częstotliwości na sprawność układu. Do analizy wykorzystano metodę elementów skończonych (FEM) z zastosowaniem aperiodycznych warunków brzegowych. Otrzymane wyniki wskazują, przy jakich parametrach układu możliwy jest bezprzewodowy transfer energii.
Rocznik
Strony
174--178
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Białystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Białystok
Bibliografia
  • [1] Barman S.D., Reza A.W., Kumar N., Karim Md. E., Munir A.B., Wireless powering by magnetic resonant coupling: Recent trends in wireless power transfer system and its applications, Renewable and Sustainable Energy Reviews, 51 (2015), 1525-1552
  • [2] Liu X., Wang G., A Novel Wireless Power Transfer System With Double Intermediate Resonant Coils, IEEE Transactions on Industrial Electronics, 63(2016), 2174-2180
  • [3] Wenxing Z, Chi Kwan L, Hui S.Y.R., General analysis on the use of Tesla's resonators in domino forms for wireless power transfer, IEEE Transactions on Industrial Electronics, 60 (2013), no. 1, 261-70
  • [4] Rim C.T., Mi C., Wireless Power Transfer for Electric Vehicles and Mobile Devices; John Wiley & Sons, Ltd.: Hoboken, United States, 2017, 473-490
  • [5] Fujimoto K., Itoh K., Antennas for Small Mobile Terminals, 2nd ed., Artech House: Norwood, USA, 2018, 30-70
  • [6] Manivannan P. , Bharathiraja S., Qi Open Wireless Charging Standard – A Wireless Technology for the Future, International Journal of Engineering and Computer Science, 2 (2013), no. 3, 573-579
  • [7] Kesler M., Highly Resonant wireless power transfer: safe, efficient and over distance, WiTricity Corporation, 2013
  • [8] Mohan S., Hershenson M., Boyd S., Lee T., Simple Accurate Expressions for Planar Spiral Inductances, IEEE Journal of solid-state circuits, 34 (1999), no. 10, 1419-1424
  • [9] Steckiewicz A., Choroszucho A., Numerical investigation of quasi-static magnetic cloak performance in time-varying magnetic field, Romanian Journal of Physics, 64 (2019), 606, 1-11
  • [10] Martin P., Ho B.J., Grupen N., Munoz S., Srivastasa M., An iBeacon Primer for Indoor Localization, In Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings (BuildSys’14), Memphis, USA, 3-6 November 2014, 190-191
  • [11] Fitzpatrick D., Implantable Electronic Medical Devices; Academic Press: San Diego, United States, 2014, 7-35
  • [12] Steckiewicz A., Choroszucho A., Optimization-based synthesis of a metamaterial electric cloak using nonhomogeneous composite materials, Journal of Electromagnetic Waves and Applications, 33 (2019), No. 14, 1933-1941
  • [13] Luo Z., Wei X., Analysis of Square and Circular Planar Spiral Coils in Wireless Power Transfer System for Electric Vehicles, IEEE Transactions on Industrial Electronics, 65 (2018), 331-341
  • [14] Steckiewicz A., Stankiewicz J.M., Choroszucho A., Numerical and Circuit Modeling of the Low-Power Periodic WPT Systems, Energies, 13 (2020), no. 10, 1-17
  • [15] Zhang Z., Pang H., Georgiadis A., Cecati C., Wireless Power Transfer-An Overview, IEEE Trans. Ind. Electron., 66 (2019), no. 2, 1044-1058
  • [16] Meeker D.C., An improved continuum skin and proximity effect model for hexagonally packed wires, Journal of Computational and Applied Mathematics - Elsevier, 236 (2012) 4635-4644
  • [17] Kim D., Abu-Siada A., Sutinjo A., State-of-the-art literature review of WPT: Current limitations and solutions on IPT, Electr. Pow. Syst. Res., 154 (2018), 493-502
  • [18] Batra T., Schal\tz E., Ahn S., Effect of ferrite addition above the base ferrite on the coupling factor of wireless power transfer for vehicle applications, Journal of Applied Physics, 117 (2015), 17D517
  • [19] Osowski S., Siwek K., Data mining of electricity consumption in small power region, In Proceedings of the 19th International Conference Computational Problems of Electrical Engineering (CPEE), Banska Stiavnica, Slovakia, 9-12 September 2018, 1-4
  • [20] El Rayes M.M., Nagib G., Abdelaal W.G.A., A Review on Wireless Power Transfer, IJETT, 40 (2016), 272- 280
  • [21] Liu S., Su J., Lai J., Accurate Expressions of Mutual Inductance and Their Calculation of Archimedean Spiral Coils, Energies, 12 (2017), no. 10, 1-14
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0dc2147-9e5c-4cd8-9653-e1888f121597
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.