Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we study the L2-boundedness and L2-compactness of a class of h-Fourier integral operators. These operators are bounded (respectively compact) if the weight of the amplitude is bounded (respectively tends to 0).
Wydawca
Czasopismo
Rocznik
Tom
Strony
595--606
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
- Université Des Sciences et Technologie Mohamed Boudiaf, Faculté Des Sciences, Département De Mathématiques, B.P 1505, El Mnaouer Oran 31000, Algeria
autor
- Université D'oran, Faculté Des Sciences Exactes et Appliquées, Département De Mathématiques, B.P. 1524 El-Mnaouer, Oran 31000, Algeria
Bibliografia
- [1] M. Aiboudi, B. Messirdi, A. Senoussaoui, A class of unbounded Fourier integral operators with symbol in (…), Int. J. Math. Anal. 1(18) (2007), 851–860.
- [2] K. Asada, D. Fujiwara, On some oscillatory transformations in L2 (Rn), Japan. J. Math. 4(2) (1978), 299–361.
- [3] S. Bekkara, B. Messirdi, A. Senoussaoui, A class of generalized integral operators, Electron J. Differential Equations 88 (2009), 1–7.
- [4] A. P. Calderón, R. Vaillancourt, On the boundedness of pseudodifferential operators, J. Math. Soc. Japan 23 (1971), 374–378.
- [5] J. J. Duistermaat, Fourier Integral Operators, Courant Institute Lecture Notes, New-York, 1973.
- [6] Yu. V. Egorov, Microlocal analysis, in: Partial Differential Equations IV, Springer, Berlin, Heidelberg, 1–147, 1993.
- [7] M. Hasanov, A class of unbounded Fourier integral operators, J. Math. Anal. Appl. 225 (1998), 641–651.
- [8] B. Helffer, Théorie spectrale pour des opérateurs globalement elliptiques, Société Mathématiques de France, Astérisque 112, 1984.
- [9] L. Hörmander, Fourier integral operators I, Acta Math. 127 (1971), 79–183.
- [10] L. Hörmander, The Weyl calculus of pseudodifferential operators, Comm. Pure. Appl. Math. 32(3) (1979), 359–443.
- [11] B. Messirdi, A. Senoussaoui, On the L2 boundedness and L2 compactness of a class of Fourier integral operators, Electron J. Differential Equations 26 (2006), 1–12.
- [12] D. Robert, Autour de l’approximation semi-classique, Birkäuser, 1987.
- [13] A. Senoussaoui, Opérateurs h-admissibles matriciels à symbole opérateur, African Diaspora J. Math. 4(1) (2007), 7–26.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0d457de-8d82-4663-a857-fa428f808e6e