Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The release of active compounds is widely studied for both biomedical and cosmetic applications. Special attention is paid to the delivery of antioxidative compounds, which act as antiaging agents and thus protect the skin and help in the wound healing process. This paper presents the results regarding the fabrication of chitosan-based films for the release of quercetin. Chitosan was modified by introducing a small amount of hyaluronic acid, and then quercetin was added. Thin polymeric films were fabricated using the solution casting method. The obtained films were analyzed using FTIR spectroscopy and thermal analysis. Surface properties have been studied using an AFM microscope. The roughness of the films was changed after the addition of hyaluronic acid and quercetin to the chitosan films. HPLC was used to analyze the release of quercetin from the polymer film. The maximum release of quercetin was found after 20 min at pH 5.5, which is the pH of normal human skin. The average percentage of the release of quercetin from the films based on chitosan was 21.62 ± 0.50%, whereas from the chitosan/ hyaluronic acid film, it was 27.07 ± 1.96%. The results suggest that the proposed films with incorporated quercetin show potential as materials for wound healing and beauty masks due to their antioxidative properties.
Czasopismo
Rocznik
Tom
Strony
art. no. 4
Opis fizyczny
Bibliogr. 57 poz., tab., wykr., zdj.
Twórcy
autor
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 St., 87-100 Torun, Poland
autor
- Laboratory for Biomaterials and Cosmetics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 St., 87-100 Torun, Poland
autor
- Laboratory for Biomaterials and Cosmetics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 St., 87-100 Torun, Poland
Bibliografia
- [1] Chen Q., Yang Z., Liu H., Man J., Oladejo A.O., Ibrahim S., Wang S., Hao B.: Novel drug delivery systems: An important direction for drug innovation. Research and development. Pharmaceutics 16 (2024) 674.
- [2] Veeresham C.: Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res. 3 (2012) 200-201.
- [3] Fowler J.F. Jr., Woolery-Lloyd H., Waldorf H., Saini R.: Innovations in natural ingredients and their use in skin care. J. Drugs Dermatol. 9 (2010) S72–S81.
- [4] Bowe W.P.: Advances in natural ingredients and their use in skin care. J. Drugs Dermatol. 12 (2013) 122-127.
- [5] Kottner J., Lichterfeld A., Blume-Peytavi U.: Maintaining skin integrity in the aged: a systematic review. Br. J. Dermatol. 169 (2013) 528–535.
- [6] De Lima Cherubim D.J., Buzanello Martins C.V., Oliveira Fariña L., da Silva de Lucca R.A.: Polyphenols as natural antioxidants in cosmetics applications. J. Cosmet. Dermatol. 19 (2020) 33–39.
- [7] Silva S., Ferreira M., Oliveira A.S., Magalhaes C., Sousa M.E., Pinto M., Sousa Lobo J.M., Almeida I.F.: Evolution of the use of antioxidants in anti-ageing cosmetics. Int. J. Cosmet. Sci. 41 (2019) 378–386.
- [8] Anand D.A., Arulmoli R., Parasuraman S.: Overviews of biological importance of quercetin: a bioactive flavonoid. Pharm. Rev. 10 (2016) 84-89.
- [9] Jia E., Yan Y., Zhou M., Li X., Jiang G., Liu W., Zhang D.: Combined effects of dietary quercetin and resveratrol on growth performance, antioxidant capability and innate immunity of blunt snout bream (Megalobrama amblycephala). Anim. Feed Sci. Technol. 256 (2019) 114268.
- [10] Xu D., Hu M.-J., Wang Y.-Q., Cui Y.-L.: Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 24 (2019) 1123.
- [11] Boesch-Saadatmandi C., Loboda A., Wagner A.E., Stachurska A., Jozkowicz A., Dulak J., Döring F., Wolffram S., Rimbach G.: Effect of quercetin and its metabolites isorhamnetin and quercetin-3--glucuronide on inflammatory gene expression. Role of miR-155. J. Nutr. Biochem. 22 (2011) 293-299.
- [12] Dabeek W.M., Marra M.V.: Dietary quercetin and kaempferol. Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 11 (2019) 2288.
- [13] Kukongviriyapan U., Sompamit K., Pannangpetch P., Kukongviriyapan V., Donpunha W.: Preventive and therapeutic effects of quercetin on lipopolysaccharide-induced oxidative stress and vascular dysfunction in mice. Can. J. Physiol. Pharmacol. 90 (2012) 1345-1353.
- [14] Ganceviciene R., Liakou A.I., Theodoridis A., Makrantonaki E., Zouboulis C.C.: Skin anti-aging strategies. Dermatoendocrinol. 4 (2012) 308-319.
- [15] Kaşıkc M.B., Bağdatlıoğlu N.: Bioavailability of quercetin. Curr. Res. Nutr. Food Sci. J. 4 (2016) 146–151.
- [16] Li A.-N., Li S., Zhang Y.-J., Xu X.-R., Chen Y.-M., Li H.-B.: Resources and biological activities of natural polyphenols. Nutrients 6 (2014) 6020-6047.
- [17] Ribeiro A.S., Estanqueiro M., Oliveira M.B., Lobo J.M.S.: Main benefits and applicability of plant extracts in skin care products. Cosmetics 2 (2015) 48-65.
- [18] Monteiro Â., Colomban S., Azinheira H.G., Guerra-Guimarães L., Silva M.D.C., Navarini L., Resmini M.: Dietary antioxidants in coffee leaves: impact of botanical origin and maturity on chlorogenic acids and xanthones. Antioxidants 9 (2019) 6.
- [19] Dos Santos É.M., de Macedo L.M., Tundisi L.L., Ataide J.A., Camargo G.A., Alves R.C., Oliveira M.B., Mazzola P.G.: Coffee by-products in topical formulations: a review. Trends Food Sci. Technol. 111 (2021) 280-291.
- [20] Wang X., Gong X., Zhang H., Zhu W., Jiang Z., Shi Y., Li L.: In vitro anti-aging activities of ginkgo biloba leaf extract and its chemical constituents. Food Sci. Technol. 40 (2020) 476-483.
- [21] Soto M.L., Falqué E., Domínguez J.: Relevance of natural phenolics from grape and derivative products in the formulation of cosmetics. Cosmetics 2 (2015) 259-276.
- [22] Brandt F.S., Cazzaniga A., Hann M.: Cosmeceuticals: Current trends and market analysis. Semin. Cutan. Med. Surg. 30 (2011) 141-143.
- [23] Baell J.B.: Feeling Nature’s PAINS: Natural Products, Natural Product Drugs, and Pan Assay Interference Compounds (PAINS). J. Nat. Prod. 79 (2016) 616-628.
- [24] Kulka K., Sionkowska A.: Chitosan based materials in cosmetic applications: A review. Molecules 28 (2023) 1817.
- [25] Casadidio C., Peregrina D.V., Gigliobianco M.R., Deng S., Censi R., Di Martino P.: Chitin and Chitosans: Characteristics, eco-friendly processes, and applications in cosmetic science. Mar. Drugs 17 (2019) 369.
- [26] Aranaz I., Acosta N., Civera C., Elorza B., Mingo J., Castro C., de los Gandía M.L., Caballero A.H.: Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers 10 (2018) 213.
- [27] Menezes J., dos Santos H., Ferreira M., Magalhães F., da Silva D., Bandeira P., Saraiva G., Pessoa O., Ricardo N., Cruz B., et al.: Preparation, structural and spectroscopic characterization of chitosan membranes containing allantoin. J. Mol. Struct. 1199 (2020) 126968.
- [28] Afonso C., Hirano R., Gaspar A., Chagas E., Carvalho R., Silva F., Leonardi G., Lopes P., Silva C., Yoshida C.: Biodegradable antioxidant chitosan films useful as an anti-aging skin mask. Int. J. Biol. Macromol. 132 (2019) 1262-1273.
- [29] Yuan G., Chen X., Li D.: Chitosan films and coatings containing essential oils: The antioxidant and antimicrobial activity, and application in food systems. Food Res. Int. 89 (2016) 117-128.
- [30] Ke C.-L., Deng F.-S., Chuang C.-Y., Lin C.-H.: Antimicrobial actions and applications of chitosan. Polymers 13 (2021) 904.
- [31] Costa E.M., Silva S., Pina C., Tavaria F.K., Pintado M.M.: Evaluation and insights into chitosan antimicrobial activity against anaerobic oral pathogens. Anaerobe 18 (2012) 305–309.
- [32] Jangra N., Singla A., Puri V., Dheer D., Chopra H., Malik T., Sharma A.: Herbal bioactive-loaded biopolymeric formulations for wound healing applications. RSC Advances 15 (2025) 12402-12442.
- [33] Udaya Rajesh R., Dhanaraj S.: Therapeutic potentials and targeting strategies of quercetin on cancer cells: Challenges and future prospects. Phytomedicine 133 (2024) 155902.
- [34] Kurniawan M.F., Setyawan D., Hariyadi D.M.: Quercetin in drug carriers: Polymer composite, physical characteristics, and in vitro study. Science and Technology Indonesia 9 (2024) 380-412.
- [35] Diez-Echave P., Ruiz-Malagón A.J., Molina-Tijeras J.A., Hidalgo-García L., Vezza T., Cenis-Cifuentes L., Rodríguez-Sojo M.J., Cenis J.L., Rodríguez-Cabezas M.E., Rodríguez-Nogales A., et al.: Silk fibroin nanoparticles enhance quercetin immunomodulatory properties in DSS-induced mouse colitis. Int. J. Pharm. 606 (2021) 120935.
- [36] Heneczkowski M., Kopacz M., Nowak D., Kuźniar A.: Infrared spectrum analysis. Acta Pol. Pharm. 58 (2001) 415-420.
- [37] Melro E., Antunes F.E., da Silva G.J., Cruz I., Ramos P.E., Carvalho F., Alves I.: Chitosan films in food applications. Tuning film properties by changing acidic dissolution conditions. Polymers 13 (2021) 1.
- [38] Mahmoud A.A., Osman O., Eid K., Ashkar E.A., Okasha A., Atta D., Eid M., Aziz Z.A., Fakhry A.: FTIR spectroscopy of natural bio-polymers blends. Middle East J. Appl. Sci., 4 (2014) 516.
- [39] Kim K.M., Son J.H.S., Kim S.-K.: Properties of chitosan films as a function of pH and solvent type. J. Food Sci. 71 (2006) 119-124.
- [40] Sionkowska A., Kaczmarek B., Michalska M., Lewandowska K., Grabska S.: Preparation and characterization of collagen/chitosan/hyaluronic acid thin films for application in hair care cosmetics. Pure Appl. Chem. 89 (2017) 1829-1839.
- [41] Lewandowska K., Sionkowska A., Grabska S., Kaczmarek B., Michalska M.: The miscibility of collagen/hyaluronic acid/chitosan blends investigated in dilute solutions and solids. J. Mol. Liq. 220 (2016) 726-730.
- [42] Feng Z., Zheng Y., Zhao L., Zhang Z., Sun Y., Qiao K., Xie Y., Wang Y., He W.: An ultrasound-controllable release system based on waterborne polyurethane/chitosan membrane for implantable enhanced anticancer therapy. Mater. Sci. Eng. C 104 (2019) 109944.
- [43] Lopes L., Molina E., Chiavacci L., Santilli C.V., Briois V., Pulcinelli S.H.: Drug-matrix interaction of sodium diclofenac incorporated into ureasil-poly(ethylene oxide) hybrid materials. RSC Adv. 2 (2012) 5629–5636.
- [44] Choi M.-H., Shin H.-J.: Anti-melanogenesis effect of quercetin. Cosmetics 3 (2016) 18.
- [45] Arung E.T., Furuta S., Ishikawa H., Kusuma I.W., Shimizu K., Kondo R.: Anti-melanogenesis properties of quercetin- and its derivative-rich extract from Allium cepa. Food Chem. 124 (2011) 1024-1028.
- [46] Saija A., Tomaino A., Trombetta D., Pellegrino M.L., Tita B., Messina C., Bonina F.P., Rocco C., Nicolosi G., Castelli F.: ‘In vitro’ antioxidant and photoprotective properties and interaction with model membranes of three new quercetin esters. Eur. J. Pharm. Biopharm. 56 (2003) 167-174.
- [47] Choudhary A., Vinay Kant V., Jangir B.L., Joshi V.G.: Quercetin loaded chitosan tripolyphosphate nanoparticles accelerated cutaneous wound healing in Wistar rats. Eur. J. Pharmacol. 880 (2020) 173172.
- [48] Esposito L., Barbosa A.I., Moniz T., Lima S.C., Costa P., Celia C., Reis S.: Design and characterization of sodium alginate and poly(vinyl) alcohol hydrogels for enhanced skin delivery of quercetin. Pharmaceutics 12 (2020) 1149.
- [49] Kopka B., Kost B., Wrześniewska J., Rajkowska K., Kadłubowski S., Kunicka-Styczyńska A., Baryga A., Gonciarz W., Basko M., Brzeziński M.: Supramolecular poly(vinyl alcohol)-based hydrogels containing quercetin for bacterial and fungal elimination. Eur. Polym. J. 187 (2023) 1-9.
- [50] Sambandam B., Kumar S., Ayyaswamy A., Yadav N., Thiyagarajan D.: Synthesis and characterization of poly D-L lactide (PLA) nanoparticles for the delivery of quercetin. Int. J. Pharm. Pharm. Sci. 7 (2015) 42–49.
- [51] Le T.H., Nguyen T.H.C., Tran T.V.T., Le L.S., Ho X.A.V., Tran T.M., Le Q.V.: Quercetin-incorporated collagen/chitosan/SiO2 composite toward the robust antioxidant biomaterials. Int. J. Polym. Mat. Polym. Biomat. 73 (2023) 1-8.
- [52] Stoyanova N., Spasova M., Manolova N., Rashkov I., Georgieva A., Toshkova R.: Antioxidant and antitumor activities of novel quercetin-loaded electrospun cellulose acetate/polyethylene glycol fibrous materials. Antioxidants 9 (2020) 232.
- [53] Farrag Y., Ide W., Montero B., Rico M., Rodríguez-Llamazares S., Barral L., Bouza B.: Starch films loaded with donut shaped starch--quercetin microparticles: Characterization and release kinetics. Int. J. Biol. Macromol. 118 (2018) 2201-2207.
- [54] Tomou E.-M., Papakyriakopoulou P., Saitani E.-M., Valsami G., Pippa N., Skaltsa H.: Recent advances in nanoformulations for quercetin. Pharmaceutics 15 (2023) 1656.
- [55] Mandić L., Matković M., Baranović G., Šegota S.: The increased release kinetics of quercetin from superparamagnetic nanocarriers in dialysis. Antioxidants 12 (2023) 732.
- [56] Wadha K., Kardian V., Puri V., Yogeshvar B., Sharma A., Pahwa R., Rao R., Gupta M., Singh I.: New insights into quercetin nanoformulations for topical delivery. Phytomedicine Plus 2 (2022) 100257.
- [57] Lewandowska K., Sionkowska A., Kurzawa M.: Physical properties and release profiles of chitosan mixture films containing salicin, glycerin and hyaluronic acid. Molecules 28 (2023) 7827.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0d34000-e3d1-4f10-875b-c8642d75168b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.