PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of an isopluvial atlas for Egypt using statistical and GIS-based methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rainfall across various climatic zones of Egypt, including arid coastal and semi-arid inland regions, exhibits significant temporal and spatial variability. Precise estimation of effective rainfall depths is essential for design engineers, hydrologists, and consultants involved in the construction of hydraulic structures such as dams, lakes, culverts, and diversions. Moreover, rainfall depth plays a crucial role in the design of urban drainage systems, small-scale irrigation projects, and broader water resource management initiatives. To address this need, an atlas of isopluvial maps for Egypt was developed using statistical methodologies and Geographic Information System (GIS) tools. This study employed short-duration rainfall data from various climatic zones of Egypt to create an empirical formula for estimating short-duration rainfall depths. Maximum annual daily rainfall data from 54 stations were analyzed to estimate short-duration rainfall values. The analytical process used Gamma distributions to determine maximum rainfall depths for various return periods and durations. The derived empirical formula and daily rainfall data were then incorporated into a GIS framework for spatial interpolation and the generation of isopluvial maps. The resulting atlas provides isopluvial maps for return periods ranging from 2 to 200 years and durations from 5 minutes to 24 hours. These maps serve as a valuable resource for decision-makers and design engineers, providing reliable rainfall estimates for specific locations or regions across Egypt. Additionally, the methodology presented in this study offers practical guidance for understanding and modeling the temporal and spatial distribution of rainfall in diverse climatic regions; its potential for improving the design of hydraulic structures is highlighted. Further validation of the atlas using independent datasets is recommended.
Twórcy
  • Water Resources Research Institute, National Water Research Center, Egypt
Bibliografia
  • Al-Aboodi A.H., Hassan A.A., Ibrahim H.T., 2019, Rainfall intensity probability for design of drainage system in Basrah City, south of Iraq, ARPN Journal of Engineering and Applied Sciences, 14 (5), 954-961.
  • Al-Amri N.S., Subyani A.M., 2017, Generation of rainfall Intensity Duration Frequency (IDF) curves for ungauged sites in Arid Region, Earth Systems and Environment, 1, DOI: 10.1007/s41748-017-0008-8.
  • AlHassoun S.A., 2011, Developing an empirical formulae to estimate rainfall intensity in Riyadh region, Journal of King Saud University - Engineering Sciences, 23 (2), 81-88, DOI: 10.1016/j.jksues.2011.03.003.
  • Almheiri K.B., Rustum R., Wright G., Adeloye A.J., 2024, The necessity of updating IDF curves for the Sharjah Emirate, UAE: A comparative analysis of 2020 IDF values in light of recent urban flooding, Water, 16 (18), DOI: 10.3390/w16182621.
  • Awadallah A.G., Younan N.S., 2012, Conservative design rainfall distribution for application in arid regions with sparse dat a, Journal of Arid Environments, 79, 6675, DOI: 10.1016/j.jaridenv.2011.11.032.
  • Bonnin G.M., Martin D., Lin B., Parzybok T., Yekta M., Riley D., 2011, Precipitation-frequency atlas of the United States, NOAA Atlas 14, Volume 1, Version 5.0, available online at https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html (09.06.2025).
  • Carvalho R. de C.F., Moreira T.R., de Souza K.B., Costa G.A., Zanetti S.S., Barbarosa K.V., Filho C.B.C., Miranda M.R., Filho P.A.G., dos Santos A.R., Ramalho A.H.C., Ferreira E.S.A., Araujo E.F., das Neves F.P., de Lima J.F.V., Moreau J.S., Belan L.L., Aguiar M.O., Gorsani R.G., da Silva Gandine S.M., dos Santos A.R., 2022, GIS-based Approach applied to study of seasonal rainfall influence over flood vulnerability, Water 14 (22), DOI: 10.3390/w14223731.
  • Das A.K., Srivastava P., Yadav B.P., 2022, Isopluvial analysis and Intensity Duration Frequency (IDF) curves for different cities in India, Mausam, 73 (4), 887-898, DOI: 10.54302/mausam.v73i4.3530.
  • Division of Hydrometeorology, 2007, Atlas of Statewise Generalised Isopluvial (Return Period) Maps of the Southern Peninsula (part-1), Office of the Director General of Meteorology, India Meteorological Department.
  • El Adlouni S., Bobée B., 2015, Hydrological Frequency Analysis using HYFRAN-PLUS Software (Version-V2.1), available online at https://wrpllc.com/books/HyfranPlus/hyfranplusdescrip.html (data access 09.06.2025).
  • El-Sayed E.A.H., 2011, Generation of rainfall Intensity Duration Frequency curves for ungauged sites, Nile Basin Water Science and Engineering Journal, 4 (1), 112-124.
  • El-Sayed E.A.H., 2017, Development of empirical formula to estimate short duration rainfall, Nile Water Sciences and Engineering Journal, 10 (1), 20-28.
  • Ewea H.A., Elfeki A.M., Al-Amri N.S., 2017, Development of intensity-duration–frequency curves for the Kingdom of Saudi Arabia, Geomatics, Natural Hazards and Risk, 8 (2), 570-584, DOI: 10.1080/19475705.2016.1250113.
  • Fathy I., Negm A.M., El-Fiky M., Nassar M., 2014, Intensity Duration Frequency curves for Sinai Peninsula, Egypt, IMPACT: International Journal of Research in Engineering and Technology, 2 (6), 105-112.
  • Gado T.A., Shalaby B.A., Guo Y, Rashwan I.M.H., 2023, Assessment of satellite-based precipitation estimates over Egypt, Journal of Hydrologic Engineering, 29 (1), DOI: 10.1061/JHYEFF.HEENG-6051.
  • Ghenim A.N., Megnounif A., 2016, Variability and trend of annual maximum daily rainfall in Northern Algeria, International Journal of Geophysics, 2016 (1), DOI: 10.1155/2016/6820397.
  • Hamed K., Rao A.R. (eds.), 2019, Flood Frequency Analysis, CRC Press, 376 pp., DOI: 10.1201/9780429128813.
  • Hamed M.M., Nashwan M.S., Shahid S., 2022, Climatic zonation of Egypt based on high-resolution dataset using image clustering technique, Progess in Earth Planetary Science, 35, DOI: 10.1186/s40645-022-00494-3.
  • Jalee L.A., Farawn M.A., 2013, Developing rainfall Intensity-Duration-Frequency relationship for Basrah City, 5 (1), 105-112, DOI: 10.30572/2018/KJE/511235.
  • Kawara A.Q., Elsebaie I.H., 2022, Development of rainfall intensity, duration and frequency relationship on a daily and sub-daily basis (Case Study: Yalamlam Area, Saudi Arabia), Water, 14 (6), DOI: 10.3390/w14060897.
  • Kourtis I.M., Tsihrintzis V.A., 2022, Update of intensity-duration-frequency (IDF) curves under climate change: a review, Water Supply, 22 (5), 4951-4974, DOI: 10.2166/ws.2022.152.
  • Matos J.E., 2018, Generic method for merging satellite and historical ground station data to design rainfall Intensity Durati on Frequency (IDF) curves in recordless sub-saharian countries, Open Journal of Modern Hydrology, 8 (4), DOI: 10.4236/ojmh.2018.84008.
  • Muhammad A., 2016, An evaluation of spatial interpolation methods for estimating rainfall and air temperature in Egypt, The Arabian Journal of Geographical Information Systems, 9 (2) 1-51.
  • Nashwan M.S., Shahid S., Wang X., 2019, Assessment of satellite-based precipitation measurement products over the hot desert climate of Egypt, Remote Sensing, 11 (5), DOI: 10.3390/rs11050555.
  • Parvez M.B., Thankachan A., Inayathulla M., 2019, Isopluvial maps of daily maximum precipitation for different frequency for upper cauvery Karnataka, Praxis Science and Technology Journal, 8 (10), 20-38, 2019.
  • Rana V.K., Linh N.T.T., Ditthakit P., Elkhrachy I., Nguyen T.T., Nguyen N.-M., 2023, Mapping and analysing framework for extreme precipitation - induced flooding, Earth Science Informatics, 16, 4213-4234, DOI: 10.1007/s12145-023-01137-x.
  • Rasel M., Islam M., 2015, Generation of rainfall Intensity-Duration-Frequency relationship for North-Western region in Bangladesh, IOSR Jounral of Environmental Science, Toxicolology and Food Technology, 9 (9), 41-47, DOI: 10.9790/2402- 09914147.
  • Roushdi M., 2022, Spatio-temporal assessment of satellite estimates and gauge-based rainfall products in northern part of Egypt, Climate, 10 (9), DOI: 10.3390/cli10090134.
  • Schroeder J.F., 2013, Surface representations of rainfall at small extents: A study of rainfall mapping based on volunteered geographic information in Kona, Hawaii, A Thesis presented to the Faculty of the USC Graduate School University of Southern California.
  • Şen Z, 2-19, Annual daily maximum rainfall-based IDF curve derivation methodology, Earth Systems and Environment, 3 (3), 463-469, DOI: 10.1007/s41748-019-00124-x.
  • Shamkhi M.S., Azeez M.K., Obeid Z.H., 2022, Deriving rainfall intensity-duration-frequency (IDF) curves and testing the best distribution using EasyFit software 5.5 for Kut city, Iraq, Open Engineering, 12 (1), 834-843.
  • Subyani A.M., Al-Amri N.S., 2015, IDF curves and daily rainfall generation for Al-Madinah city, western Saudi Arabia, Arabian Journal of Geosciences, 8 (12), 11107-11119, DOI: 10.1007/s12517-015-1999-9.
  • The Rainfall Atlas of Hawai’i, 2011, Geography Department - University of Hawaiʻi at Mānoa, available online at https://www.hawaii.edu/climate-data-portal/hawaii-climate-atlases/ (data access 09.06.2025).
  • Trypaluk C., Unruh D., St. Laurent M., Jordan A., Mantripragada R.S.S., Pavlovic S., Fall G., Salas F., 2024, PrecipitationFrequency Atlas of the United States, Volume 12 Version 2.0: Interior Northwest Idaho, Montana, Wyoming.
  • Zittis G., Almazroui M., Alpert P., Ciais P., Cramer W., Dahdal Y., Fnais M., Francis D., Hadjinicolaou P., Howari F., Jrrar A., Kaskaoutis D.G., Kulmala M., Lazoglou G., Mihalopoulos N., Lin X., Rudich Y., Sciare J., Stenchikov G., Xoplaki E., Lelieveld J., 2022, Climate change and weather extremes in the Eastern Mediterranean and Middle East, Reviews of Geophysics, 60 (3), DOI: 10.1029/2021RG000762.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0cd6ef2-0bc4-4a74-a5a4-5a9ba564d447
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.