PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radon and thoron exhalation rate measurements from building materials used in Serbia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
III International Conference „Radon in the Environment” (3 ; 27-31 May 2019 ; Krakow, Poland)
Języki publikacji
EN
Abstrakty
EN
The second most important source of indoor radon, after soil beneath dwelling, is building material. With the increase in environmental awareness and new energy-saving policies, residents tend to replace the existing windows with tighter windows, which leads to a decrease in air exchange rate and consequently an increase in indoor radon concentration. In case of low exchange rates, dose caused by inhalation of radon and its progeny can exceed external dose originating from the radium content in the surrounding building material. In this paper, surface exhalation rates of radon (222Rn) and thoron (220Rn) from typical building materials used for construction and interior decoration of houses in Serbia were investigated. Surface exhalation rate measurements were performed using the closed-chamber method, while concentrations of radon and thoron in the chamber were continuously measured using an active device, RTM1688-2, produced by SARAD® GmbH. Finally, the impact of the replacement of windows on the indoor radon concentration was estimated.
Czasopismo
Rocznik
Strony
111--114
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
  • “Vinča” Institute of Nuclear Sciences University of Belgrade Mike Petrovića Alasa 12-14, 1100 Belgrade, Serbia
  • “Vinča” Institute of Nuclear Sciences University of Belgrade Mike Petrovića Alasa 12-14, 1100 Belgrade, Serbia
  • “Vinča” Institute of Nuclear Sciences University of Belgrade Mike Petrovića Alasa 12-14, 1100 Belgrade, Serbia
  • “Vinča” Institute of Nuclear Sciences University of Belgrade Mike Petrovića Alasa 12-14, 1100 Belgrade, Serbia
  • “Vinča” Institute of Nuclear Sciences University of Belgrade Mike Petrovića Alasa 12-14, 1100 Belgrade, Serbia
  • “Vinča” Institute of Nuclear Sciences University of Belgrade Mike Petrovića Alasa 12-14, 1100 Belgrade, Serbia
  • Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4, 11000 Belgrade, Serbia
Bibliografia
  • 1. International Agency for Research on Cancer. (1988) Manmade mineral fibres and radon. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 43). Lyon, France: IARC.
  • 2. World Health Organization. (2009). WHO Handbook on indoor radon: A public health perspective. Geneva: WHO. Available from https://www.ncbi.nlm.nih.gov/books/NBK143222/.
  • 3. European Union. (2013). Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.Official Journal of the European Union, OJ L13, 17.1.2014, 1–73. https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=OJ:L:2014:013:TOC.
  • 4. World Health Organization. (2010). Guidelines for indoor air quality: Selected pollutants. Copenhagen, Denmark: WHO Regional Office for Europe.
  • 5. Oreszczyn, T., Mumovic, D., Ridley, I., & Davies, M. (2005). The reduction in air infi ltration due to window replacement in UK dwellings: Results of a field study and telephone survey. Int. J. Vent., 4(1), 71–77.DOI: 10.1080/14733315.2005.11683700.
  • 6. Yarmoshenko, I. V., Vasilyev, A. V., Onishchenko, A.D., Kiselev, S. M., & Zhukovsky, M. V. (2014). Indoor radon problem in energy efficient multi-storey buildings. Radiat. Prot. Dosim., 160, 53–56. DOI: 10.1093/rpd/ncu110.
  • 7. Avramović, D., Čeliković, I., Ujić, P., Vukanac, I., Kandić, A., Jevremović, A., Antonijević, D., & Lončar, B. (2018). Radon exhalation rate of some building materials common in Serbia. In RAD 2018 Proceedings: 6. International Conference on Radiation and Applications in Various Fields of Research, 18–22 June 2018, Ohrid, Macedonia (Vol. 3, pp. 119–122). Niš, Serbia: RAD Association. DOI: 10.21175/RadProc.2018.26.
  • 8. Abu-Jarad, F. A. (1988). Application of nuclear track detectors for radon related measurements. Nucl. Tracks Radiat. Meas., 15(1/4), 525–534. DOI: 10.1016/1359-0189(88)90195-1.
  • 9. Ujić, P., Čeliković, I., Kandić, A., & Žunić, Z. (2008). Standardization and difficulties of the thoron exhalation rate measurements using an accumulation chamber. Radiat. Meas., 43(8), 1396–1401. DOI: 10.1016/j.radmeas.2008.03.003.
  • 10. Poffijn, A., Bourgoignie, R., Mirijins, R., Uyttenhove, J., Janssens, A., & Jacobs, R. (1984). Laboratory measurements of radon exhalation and diffusion. Radiat. Prot. Dosim. 7, 77–79.
  • 11. Ujic, P., Celikovic, I., Kandic, A., Vukanac, I., Djurasevic, M., Dragosavac, D., & Zunic, Z. S. (2010). Internal exposure from building materials exhaling 222Rn and 220Rn as compared to external exposure due to their natural radioactivity content. Appl. Radiat. Isot., 68, 201–206. DOI: 10.1016/j.apradiso.2009.10.003.
  • 12. Stoulos, S., Manolopoulou, M., & Papastefanou, C. (2003). Assessment of natural radiation exposure and radon exhalation from building materials in Greece. J. Environ. Radioact., 69(3), 225–240. DOI: 10.1016/0265-931x(03)00081-x.
  • 13. United Nations Scientific Committee on the Effects of Atomic Radiation. (2000). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes. Vol. 1: Sources. New York: United Nations.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0cb0b26-3acd-45d7-8ec1-fdbe4047e8e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.