PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Numerical Evaluation of Partially Strengthened Floating Granular Pile Raft With Vertical and Radial Displacement Compatibility

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In today’s time, construction is the main key for development of any nation, but land resources are getting deplete. Thus, construction on compressible soil is left as a choice. Stone columns or granular piles (GPs) are broadly used to advance the bearing capacity of crummy ground and lessen the displacement of construction serected on them. GP is the most efficient and cheap for ground improvement. Analysis of single partially strengthened (SPS) floating granular piled raft is presented in this paper in terms of several normalized aspects like vertical and radial displacement impact factors, settlement impact factor (SIF) for any depth, the normalized GP–soil interface shear and radial stresses, the load ratio, i.e., the percentage of the load taken by the GP and raft to the total load, and the normalized contact pressure distribution below the raft, which are evaluated for SPS floating granular piled raft. The SIF for top of GP is noticed to decline with the surge in the values of the strengthening parameters. The interfacial shear stresses get reorganized along the length of the GP.
Wydawca
Rocznik
Strony
148--161
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Department of Civil Engineering, Rajasthan Technical University, Kota
  • Department of Civil Engineering, Rajasthan Technical University, Kota
  • Department of Civil Engineering, Rajasthan Technical University, Kota
Bibliografia
  • [1] Burland, J. B. (1977). Behaviour of foundations and structures on soft ground. Proc. 9th ICSMFE, 1977, 2, 495–546.
  • [2] Poulos, H. G. (1968). Analysis of the settlement of pile groups. Geotechnique, 18(4), 449–471.
  • [3] Randolph, M. F. (1983). Design of Piled Raft Foundations. Cambridge University. Eng. Depart. Research Report, Soils TR143, Cambridge.
  • [4] Huang, M., Liang, F., & Li, Z. (2007). Recent advances in the analysis of pile foundation in China. In Advances in deep foundations (pp. 127–136). CRC Press.
  • [5] Poulos, H.G. (2001). Piled raft foundations: design and applications. Geotechnique, 51(2), 95–113.
  • [6] Liang, F. Y., Chen, L. Z., & Shi, X. G. (2003). Numerical analysis of composite piled raft with cushion subjected to vertical load. Computers and Geotechnics, 30(6), 443–453.
  • [7] Liang, F., Li, J., & Chen, L. (2006). Optimization of composite piled raft foundation with varied rigidity of cushion. In Foundation Analysis and Design: Innovative Methods (pp. 29–34).
  • [8] Eslami, A., & Malekshah, S. S. (2011). Analysis of non-connected piled raft foundations (NCPRF) with cushion by finite element method. Computational Methods in Civil Engineering, 2(2).
  • [9] Tradigo, F., Pisanò, F., Di Prisco, C., & Mussi, A. (2015). Non-linear soil–structure interaction in disconnected piled raft foundations. Computers and Geotechnics, 63, 121–134.
  • [10] Tradigo, F., Pisanò, F., & di Prisco, C. (2016). On the use of embedded pile elements for the numerical analysis of disconnected piled rafts. Computers and Geotechnics, 72, 89–99.
  • [11] Sharma, V. J., Vasanvala, S. A., & Solanki, C. H. (2014). Behaviour of load-bearing components of a cushioned composite piled raft foundation under axial loading. Slovak Journal of Civil Engineering, 22(4), 25–34.
  • [12] Eid, H. T., & Shehada, A. A. (2015). Estimating the elastic settlement of piled foundations on rock. International Journal of Geomechanics, 15(3), 04014059.
  • [13] Huang, M., Liang, F., & Jiang, J. (2011). A simplified nonlinear analysis method for piled raft foundation in layered soils under vertical loading. Computers and Geotechnics, 38(7), 875–882.
  • [14] Kuwabara, F. (1989). An elastic analysis for piled raft foundations in a homogeneous soil. Soils and foundations, 29(1), 82–92.
  • [15] Lee, S., & Moon, J. S. (2017). Effect of interactions between piled raft components and soil on behavior of piled raft foundation. KSCE Journal of Civil Engineering, 21(1), 243–252.
  • [16] Luo, R., Yang, M., & Li, W. (2018). Normalized settlement of piled raft in homogeneous clay. Computers and Geotechnics, 103, 165–178.
  • [17] Maharaj, D. K., & Gandhi, S. R. (2004). Non-linear finite element analysis of piled-raft foundations. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 157(3), 107–113.
  • [18] Shen, W. Y., Chow, Y. K., & Yong, K. Y. (2000). A variational approach for the analysis of pile group–pile cap interaction. Geotechnique, 50(4), 349–357.
  • [19] Mindlin, R. D. (1936). Force at a point in the interior of a semi-infinite solid. physics, 7(5), 195–202.
  • [20] Sharma, J. K. (1999). Analysis and settlement of granular pile (s)-single, in group and with raft (Doctoral dissertation, Ph. D. Thesis, IIT, Kanpur, 408).
  • [21] Madhav, M. R., Sharma, J. K., & Sivakumar, V. (2009). Settlement of and load distribution in a granular piled raft. Geomechanics and Engineering, 1(1), 97–112.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0caa5ea-320c-476f-bead-ea1c259c53b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.