Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research evaluates the residual stresses and microstructure of rods fabricated from a hybrid aluminum matrix composite (Al1050/B4C/FA). The rod composite is subjected to various passes (cycles) using equal channel angular pressing (ECAP) at room temperature. Channel angles of 120° and 135° with pass numbers of 1P, 2P, 3P, 4P, 5P, and 6P are used to investigate the in-duced residual stresses (IRS) and examine the microstructure. The destructive cutting technique (CT) is employed to assess the state of IRS in the axial direction, and scanning electron micros-copy (SEM) is used to check the microstructure before and after severe plastic deformation (SPD). The results show that the values of residual stresses tend to increase due to the effects of SPD compared to the casting composite. As the ECAP cycles increase, the magnitudes of residu-al stresses start to change; the compressive state of residual stresses is near the rod surface, while the stresses are in tensile state near the center of the composite rod. The cycles of ECAP signifi-cantly impact the grain size reduction. The smallest grain size is observed at a die angle of 120° after 6 ECAP passes, measuring between 1 and 8 µm, while the grain size for the casted rods ranged from 4 to 15 µm.
Wydawca
Rocznik
Tom
Strony
338--345
Opis fizyczny
Bibliogr. 25 poz., fig., tab.
Twórcy
autor
- Department of Material Engineering, College of Engineering, University of Diyala, 32001, Baqubah, Diyala, Iraq
autor
- Department of Material Engineering, College of Engineering, University of Diyala, 32001, Baqubah, Diyala, Iraq
Bibliografia
- 1. Kumar KR, Kiran K, Sreebalaji V. Micro structural characteristics and mechanical behaviour of aluminium matrix composites reinforced with titanium carbide. Journal of Alloys and Compounds. 2017;723:795–801. https://doi.org/10.1016/j.jallcom.2017.06.309.
- 2. Dhanesh S, Kumar KS, Fayiz NM, Yohannan L, Sujith R. Recent developments in hybrid aluminium metal matrix composites: A review. Materials Today: Proceedings. 2021;45:1376–81. https://doi.org/10.1016/j.matpr.2020.06.325.
- 3. Gattmah J, Ozturk F, Shihab SK, Orhan S. Influencing the residual stresses in tubes drawn with a floating plug by changing tool parameters. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2022;44(7):298. https://doi.org/10.1007/s40430-022-03609-5.
- 4. Gattmah J, Hussein EA, Jaseem AN, Shihab SK. Die angle effect on the generated residual stresses in the inclined and final region during the aluminum extrusion. Journal of Mechanical Science and Technology. 2024;38(8):4277–86. https://doi.org/10.1007/s12206-024-0724-6.
- 5. Hussein EA, Gattmah J, Jaseem AN. Optimization of rolling parameters for enhancing the surface integrity of aluminum alloy. Journal of Harbin Institute of Technology (New Series). 2023. https://doi.org/10.11916/j.issn.1005-9113.2022115.
- 6. Horn T, Silbermann C, Ihlemann J. FE‐Simulation based analysis of residual stresses and strain localizations in ECAP processing. PAMM. 2017;17(1):309–10. https://doi.org/10.1002/pamm.201710124.
- 7. Abd El Aal MI, Sadawy M. Influence of ECAP as grain refinement technique on microstructure evolution, mechanical properties and corrosion behavior of pure aluminum. Transactions of Nonferrous Metals Society of China. 2015;25(12):3865–76. https://doi.org/10.1016/S1003-6326(15)64034-1.
- 8. Lokesh T, Mallik U. Effect of equal channel angular pressing on the microstructure and mechanical properties of hybrid metal matrix composites. Indian Journal of Science and Technology. 2016;9:1–7. https://doi.org/10.17485/ijst/2016/v9i35/88443.
- 9. Lee HH, Gangwar KD, Park K-T, Woo W, Kim HS. Neutron diffraction and finite element analysis of the residual stress distribution of copper processed by equal-channel angular pressing. Materials Science and Engineering: A. 2017;682:691–7. https://doi.org/10.1016/j.msea.2016.11.094.
- 10. Bharath A, Sundeep A, Sharan A, Reddy ASP, Phanibhushana M. Characterisation of aluminum metal matrix hybrid composites subjected to equal channel angular pressing. Materials Today: Proceedings. 2018;5(11):25396–403. https://doi.org/10.1016/j.matpr.2018.10.344.
- 11. Romero-Resendiz L, Figueroa I, Reyes-Ruiz C, Cabrera J, Braham C, Gonzalez G. Residual stresses and microstructural evolution of ECAPed AA2017. Materials Characterization. 2019;152:44–57. https://doi.org/10.1016//j.matchar.2019.04.007.
- 12. Sureshkumar P, Uvaraja V, Rajakarunakaran S. Addition of metallic reinforcement enhanced deformation and properties of ceramic reinforced composite by adapting ECAP with increment number of passes. Materials Research Express. 2019;6(8):086502. https://doi.org/10.1088/2053-1591/ab1b82.
- 13. Hou X, Ban C, editors. Effect of ECAP on microstructure uniformity and mechanical properties of high purity aluminum. Journal of Physics: Conference Series; 2021: IOP Publishing. https://doi.org/10.1088/1742-6596/2021/1/012077.
- 14. Güler Ö, Bağcı N, Güler SH, Canbay CA, Safa H, Yılmaz TA, et al. The effect of equal-channel angular pressing (ECAP) on the properties of graphene reinforced aluminium matrix composites. Journal of Composite Materials. 2021;55(13):1749–68. https://doi.org/10.1177/0021998320979040.
- 15. Shivashankara B, Gopi K, Pradeep S, Rao RR, editors. Investigation of mechanical properties of ECAP processed AL7068 aluminium alloy. IOP Conference Series: Materials Science and Engineering; 2021: IOP Publishing. https://doi.org/10.1088/1757-899X/1189/1/012027.
- 16. Al-Alimi S, Lajis MA, Shamsudin S, Yusuf NK, Chan BL, Didane DH, et al. Development of hot equal channel angular processing (ECAP) consolidation technique in the production of boron carbide (b4c)-reinforced aluminium chip (aa6061)-based composite. International Journal of Renewable Energy Development. 2021;10(3):607. https://doi.org/10.14710/ijred.2021.33942.
- 17. Agarwal KM, Tyagi R, Choubey V, Saxena KK. Mechanical behaviour of Aluminium Alloy AA6063 processed through ECAP with optimum die design parameters. Advances in Materials and Processing technologies. 2022;8(2):1901–15. https://doi.org/10.1080/2374068X.2021.1878705.
- 18. Sureshkumar P, Jagadeesha T, Natrayan L, Ravichandran M, Veeman D, Muthu S. Electrochemical corrosion and tribological behaviour of AA6063/Si3N4/Cu(NO3)2 composite processed using single-pass ECAPA route with 120 die angle. Journal of Materials Research and Technology. 2022;16:715–33. https://doi.org/10.1016/j.jmrt.2021.12.020.
- 19. Sathi BR, Gurugubelli SN. The effect of ECAP on Structural Morphology and Wear Behaviour of 5083 Al Composite Reinforced with Red Mud. 2023. https://doi.org/10.5109/6792827.
- 20. Tolcha MA, Gebrehiwot TM, Lemu HG. Enhancing mechanical properties of cast ingot Al6061 alloy using ECAP process. Journal of Materials Engineering and Performance. 2024:114. https://doi.org/10.1007/s11665-024-09978-3.
- 21. Hassan AM, Gattmah J, Shihab SK. Evaluation of microstructure and mechanical properties of Al1050/Al2O3/Gr composite processed by forming operation ECAP. Open Engineering. 2024;14(1):20240041. https://doi.org/10.1515/eng-2024-0041.
- 22. Canute X, Majumder M. Mechanical and tribological behaviour of stir cast aluminium/boron carbide/fly ash composites. Journal of Engineering Science and Technology. 2018;13(3):755–77.
- 23. Bhowmik A, Kumar R, Babbar A, Romanovski V, Roy S, Patnaik L, et al. Analysis of physical, mechanical and tribological behavior of Al7075-fly ash composite for lightweight applications. International Journal on Interactive Design and Manufacturing (IJIDeM). 2024;18(6):3699–712.
- 24. Sathish S, Nair A, Sundaraselvan S. Investigation on mechanical properties of aluminum hybrid matrix composites reinforced with fly ash and titanium diboride using stir casting technique. Materials Research Express. 2024;11(7):076523. https://doi.org/10.1088/2053-1591/ad6238.
- 25. Gattmah J, Ozturk F, Orhan S. Experimental and finite element analysis of residual stresses in cold tube drawing process with a fixed mandrel for AISI 1010 steel tube. The International Journal of Advanced Manufacturing Technology. 2017;93:1229–41. https://doi.org/10.1007/s00170-017-0583-8.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0be653d-a938-40df-8cce-b890e54b2369
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.