PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Digital Image Correlation Method in Monitoring Deformation During Geogrid Testing

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza deformacji powierzchni próbek geosiatek z wykorzystaniem metody cyfrowej korelacji obrazu
Języki publikacji
EN
Abstrakty
EN
This article presents the results of tests on geogrids conducted using the Digital Image Correlation (DIC) method and those of numerical simulations of laboratory tests on the geogrid using the wide-width strip method. DIC allowed for the non-contact determination of displacements and strains for the entire surface of the samples of geosynthetics tested. The results of the laboratory tests and numerical simulations have been compared. The results of the tests and analyses indicate that the DIC method is an effective tool for evaluating the parameters of geogrids used in GRS systems and in pavement structures. In addition to the standard deformation image for the averaged base, analysis of deformations in any direction and at any point on the surface of the geogrid is possible. The measurement method applied also opens possibilities for validation of numerical models of geogrids made using the finite element method (FEM).
PL
W artykule zaprezentowano wyniki laboratoryjnych badań geosyntetyków przeprowadzonych z wykorzystaniem metody cyfrowej korelacji obrazu (Digital Image Correlation) oraz ich porównanie z wynikami uzyskanymi tradycyjną tensometryczną metodą pomiarową. Badaniom wytrzymałościowym metodą szerokich próbek poddano geosiatki poliestrowe i szklane. W artykule zaprezentowano również numeryczny model przeprowadzonego badania. Wyniki symulacji numerycznych odniesiono do wyników badań laboratoryjnych. Zrealizowane badania materiałów geosyntetycznych oraz analizy uzyskanych wyników pozwoliły na sformułowanie szeregu wniosków. Pierwszym spostrzeżeniem było, iż dwuwymiarowa analiza deformacji metodą DIC pozwala na bezkontaktowe określenie całościowego charakteru pracy powierzchni badanego geosyntetyku. Daje to możliwość określenia rejonów najbardziej wytężonych, również poza obszarem bazy. Kolejną ważną zaletą metody jest możliwość analizy zagadnienia wartości i wektorów własnych wraz z wyznaczeniem pól przemieszczeń i odkształceń dla całej powierzchni badanej próbki. Rozwiązanie to nie jest możliwe przy wykorzystaniu tradycyjnej tensometrycznej metody pomiarowej. Istotne jest również otwarcie możliwość walidacji modeli numerycznych wykonanych przy użyciu metody elementów skończonych.
Rocznik
Strony
84--90
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Cracow University of Technology, Faculty of Civil Engineering, ul. Warszawska 24, 31-155 Kraków, Poland
  • Cracow University of Technology, Faculty of Civil Engineering, ul. Warszawska 24, 31-155 Kraków, Poland
Bibliografia
  • 1. Wu JTH, Lee KZZ, Helwany SB, Ketchart K. Design and Construction Guidelines for Geosynthetic Reinforced Soil Bridge Abutments with a Flexible Facing. NCHRP REPORT 556. University of Colorado at Denver, Denver, CO. Transportation Research Board of the National Academies, Washington, D.C., 2006.
  • 2. Adams M, Ketchart K, Ruckman A, Dimillio AF, Wu J, Satyanarayana R. Reinforced Soil for Bridge Support Applications on Low-Volume Roads. Transportation Research Record: Journal of the Transportation Research Board, Transportation Research Board of the National Academies, Washington, D.C., no. 1652, 150-160, 1999.
  • 3. Nicks J E, Adams M, Wu J. A new approach to the design of closely spaced geosynthetic reinforced soil for load bearing applications. Transportation Research Board of the National Academies, 92th Annual Meeting, Washington, D.C., 2013.
  • 4. Chen Q, Abu-Farsakh M Y, Sharma R, Zhang X. Laboratory Investigation of the Behavior of Foundations on Geosynthetic Reinforced Clayey Soil. Transportation Research Record: Journal of the Transportation Research Board, Transportation Research Board of the National Academies, Washington, D.C., no. 2004, 28-38, 2007.
  • 5. Górszczyk J, Gaca S. The influence of the carbo-glass geogrid-reinforcement on the fatigue life of the asphalt pavement structure, Archives of Civil Engineering 2012; 58, 1: 97-113.
  • 6. Szydło A, Malicki K. Analysis of the correlation between the static and fatigue test results of the interlayer bondings of asphalt layers. Archives of Civil Engineering 2016; 62, 1: 83-98.
  • 7. Judycki J, Jaskuła P, Pszczoła M, Dołżycki B, Stienss M. New polish catalogue of typical flexible and semi-rigid pavements. MATEC Web of Conferences 2017; 122, 04002.
  • 8. EN ISO 10319:2015 Geosynthetics, Wide-width tensile test (ISO 10319:2015). European Committee for Standardization.
  • 9. Youngguk S, Kim Y R, Witczak M W, Bonaquist R. Application of Digital Image Correlation Method to Mechanical Testing of Asphalt–Aggregate Mixtures. Transportation Research Record: Journal of the Transportation Research Board, Transportation Research Board of the National Academies, Washington, D.C., no. 1789, 162-172, 2002.
  • 10. Romeo E. Two-dimensional digital image correlation for asphalt mixture characterisation: interest and limitations. Road Materials and Pavement Design 2013; 14, 4, 747-763.
  • 11. Romeo E, Montepara A. Characterization of reinforced asphalt pavement cracking behavior using flexural analysis. SIIV – 5th International Congress – Sustainability of Road Infrastructures, Procedia – Social and Behavioral Sciences 2012, 53, 356-365.
  • 12. Szymczak T, Grzywna P, Kowalewski Z L. Modern methods for determination of mechanical properties of engineering materials. Transport samochodowy 2013, 1: 79-104.
  • 13. Siebert T, Crompton M J. Application of High Speed Digital Image Correlation for Vibration Mode Shape Analysis. Proceedings of the SEM Annual Conference, Indianapolis, Indiana USA ©2010 Society for Experimental Mechanics Inc, June 7-10, 2010.
  • 14. Górszczyk J, Malicki K. Laboratory tests of the selected mechanical properties of the soil stabilized with a road binder. 17th International Multidisciplinary Scientific GeoConference SGEM 2017, Conference Proceedings Vol. 17, Science and Technologies in Geology, Exploration and Mining, Issue 12, Albena, Bulgaria, 491-498, 2017.
  • 15. Birgisson B, Montepara A, Napier J, Romeo E, Roncella R, Tebaldi G. Micromechanical Analyses for Measurement and Prediction of Hot-Mix Asphalt Fracture Energy. Transportation Research Record: Journal of the Transportation Research Board, Transportation Research Board of the National Academies, Washington, D.C., no. 1970, 186-195, 2006.
  • 16. Safavizadeh SA, Wargo A, Guddati M, Kim YR. Investigation of Reflective Cracking Mechanisms in Grid-Reinforced Asphalt Specimens Using Four- Point Bending Notched Beam Fatigue Tests and Digital Image Correlation. Transportation Research Record: Journal of the Transportation Research Board, Transportation Research Board of the National Academies, Washington, D.C., no. 2507, 29-38, 2015.
  • 17. Oats RC, Harris DK, Ahlborn TM, de Melo e Silva HA. “Evaluation of the Digital Image Correlation Method As a Structural Damage Assessment and Management Tool”. Transportation Research Board of the National Academies, 92th Annual Meeting, Washington, D.C., 2013.
  • 18. Digital Image Correlation for Deformation Measurement. Dantec Dynamics. http://www.dantecdynamics.com.
  • 19. Sutton MA, Orteu J, Schreier HW. Image Correlation for Shape, Motion and Deformation Measurements. Springer Science+Business Media, LLC, New York, 2009.
  • 20. Huang YH, Liu L, Sham FC, Chan YS. Ng S P. Optical strain gauge vs. traditional strain gauges for concrete elasticity modulus determination. Optik – International Journal for Light and Electron Optics 2010; 121: 18.
  • 21. Fortrac – Immensely Versatile Solutions for Reinforced Soil, 11/15 B HUESKER Synthetic GmbH, Gescher 2015. http://www.huesker.com, http://www.huesker.pl.
  • 22. Fortrac geogrids in geosynthetic reinforced soil systems, (in Polish). Przedsiębiorstwo realizacyjne Inora Sp. z o. o. 2ndedition. http://www.inora.pl.
  • 23. Górszczyk J, Malicki K. Study of the mechanical properties of a hexagonal geogrid using the digital image correlation method. 17th International Multidisciplinary Scientific Conference on Earth & Geosciences SGEM 2017. Conference Proceedings Vol. 17, Science and Technologies in Geology, Exploration and Mining, Issue 12, Albena, Bulgaria, pp. 809-816, 2017.
  • 24. Górszczyk J, Malicki K. Three-dimensional finite element analysis of geocell-reinforced granular soil. 18th International Multidisciplinary Scientific GeoConference SGEM 2018, Conference Proceedings Vol. 18, Science and Technologies in Geology, Exploration and Mining, Issue 1.2, Albena, Bulgaria, 735-742, 2018.
  • 25. Górszczyk J, Malicki K, Spławińska M. Structural analysis of soil reinforced by geocell system using analytical-empirical method. 18th International Multidisciplinary Scientific GeoConference SGEM 2018. Conference Proceedings Vol. 18, Science and Technologies in Geology, Exploration and Mining, Issue 1.2, Albena, Bulgaria, 669-676, 2018.
  • 26. Grygierek M, Kawalec J. Selected laboratory research on geogrid impact on stabilization of unbound aggregate layer. Procedia Engineering 2017; 189: 484-491.
  • 27. Technical Data Sheet S&P Glasphalt G, S&P Clever Reinforcement Company AG, Seewernstr. 127 CH-5423 Seewen, VER07/15_HUM, http://www.sp-reinforcement.eu.
  • 28. ANSYS Inc. Documentation for ANSYS 10.0. 2005 SAS IP.
  • 29. Górszczyk J. Influence of the geosynthetic reinforcement on fatigue life of the asphalt pavement. PhD dissertation, Cracow University of Technology, 2010.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0bc51c2-34a8-4906-859a-ccab155e371d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.