Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Optymalizacja procesu druku sublimacyjnego na tekstyliach metodą Taguchi
Języki publikacji
Abstrakty
In this paper, printing parameters for the sublimation printing of polyester fabrics like the number of strokes, the sublimation paper weight in grams per square metre, the fusing temperature and time were optimised using the Tauguchi experimental design technique. In the evaluations the signal-to-noise ratio was used. Sixteen experiments were performed with respect to the L 16 Orthogonal array design for the Tauguchi approach. The results show a considerable improvement in the signal-to-noise ratio as compared to the initial conditions. Through this study, not only can optimum printing conditions for sublimation printed polyester fabr ics be obtained but also the significant factors that affect water vapour resistance.
W pracy zoptymalizowano, przy użyciu eksperymentalnej techniki projektowania Tauguchi, parametry druku sublimacyjnego tkanin poliestrowych, takie jak: liczba pociągnięć, gramatura papieru sublimacyjnego w gramach na metr kwadratowy, temperatura i czas stapiania. W ocenach wykorzystano stosunek sygnału do szumu. Przeprowadzono 16 eksperymentów w odniesieniu do projektu macierzy ortogonalnej L 16 dla podejścia Tauguchi. Wyniki wskazały na znaczną poprawę stosunku sygnału do szumu w porównaniu z warunkami początkowymi. Dzięki zaprezentowanym badaniom można nie tylko uzyskać optymalne warunki drukowania na tkaninach poliestrowych drukowanych sublimacyjnie, ale także uwypuklić istotne czynniki wpływające na odporność na parę wodną.
Czasopismo
Rocznik
Strony
75--79
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- G.R.G. Polytechnic College, Department of Textile Processing, Kuppepalayam, Sarkar Samakulam, Coimbatore, India
autor
- PSG College of Technology, Department of Textile Technology, Peelamedu, Coimbatore, India
Bibliografia
- 1. Fukazawa T, Kawamura Y, Tochihara Y, Tamura T. Water Vapour Transport Through Textiles and Condensation in Clothes at High Altitudes – Combined Influence of Temperature and Pressure Simulating Altitude. Text. Res. J. 2003: 73 (8): 657-663.
- 2. Dehghani A, Jahanshah F, Borman D, Dennis K, Wang J. Design and Engineering Challenges for Digital Ink-Jet Printing on Textiles. International Journal of Clothing Science and Technology 2004; 16: 262-273.
- 3. Yuen C, Ku S, Choi P, Kan CW. Study of the Factors Influencing Colour Yield of an Ink-Jet Printed Cotton Fabric. Coloration Technology 2004: 120: 320-325.
- 4. Choi PSR, Yuen CWM, Ku SKA, Kan CW. Digital Ink-jet Printing for Chitosan-treated Cotton Fabric. Fibers and Polymers 2005; 6, 3: 229-235.
- 5. Owen P. Digital Printing: A World of Opportunity from Design to Production. AATCC Review 2003; 3, 9: 10-15.
- 6. Park CK, Ha JY. A Process for Optimizing Sewing Conditions to Minimize Seam Pucker Using the Taguchi Method. Textile Research Journal 2005; 75(3): 245-252.
- 7. Palanikumar K. Cutting Parameters Optimization for Surface Roughness in Machining of GFRP Composites Using Taguchi’s Method. Journal of Reinforced Plastics and Composites 2006; 25, 16: 1739-1751.
- 8. Ishtiaque SM, Salhotra KR. Study of Effect of Spinning Process Variables on the Packing Density of Ring, Rotor and Air-Jet Yarns Using the Taguchi Method. Autex Research Journal 2006; 6, 3: 122-135.
- 9. Kumar A, Ishtiaque SM, Salhotra KR. Analysis of Spinning Process Using the Taguchi Method. Part IV: Effect of Spinning Process Variables on Tensile Properties of Ring, Rotor and Air-jet Yarns. Journal of the Textile Institute 2006; 97, 5: 385-390.
- 10. SSalhotra KR, Ishtiaque SM, Kumar A. Analysis of Spinning Process Using the Taguchi Method. Part I: Effect of Spinning Process Variables on Fibre Orientation and Tenacities of Sliver and Roving. Journal of the Textile Institute 2006; 97, 4: 271-284.
- 11. Cheng JC, Lai WT, Chou CY, Lin HH. Determination of Sizing Conditions for E-Glass Fibre Yarn Using Tauguchi Parameter Design. Materials Science and Technology 2007; 23, 6: 683-687.
- 12. Brojeswari Das, Das A, Kothari1 VK, Fangueiro R, de Araújo M. Moisture Transmission Through Textiles-Part II: Evaluation Methods And Mathematical Modelling. AUTEX Research Journal 2007; 7, 3: 194-216.
- 13. Yang K, Jiao M L, Chen Y-S, Li J, Zhang W-Y. Analysis and Prediction of Dynamic Heat-Moisture Comfort Property of Fabric. FIBRES & TEXTILES in Eastern Europe 2008; 16, 3(68): 51-55.
- 14. Zeydan M. Modelling the Woven Fabric Strength Using Artificial Neural Network and Taguchi Methodologies. International Journal of Clothing Science and Technology 2008; 20, 2: 104-118.
- 15. Mavruz S, Ogulata RT. Taguchi Approach for the Optimisation of the Bursting Strength of Knitted Fabrics. FIBRES & TEXTILES in Eastern Europe 2010, 18, 2(79): 78-83.
- 16. Kašiković N, Novaković D, Karlović I, Vladić G. Influence of Ink Layers on the Quality of Ink Jet-printed Textile Materials. Tekstil ve konfeksiyon 2012; 22, 2: 115-120.
- 17. ISO 11092:2014. Textiles – Physiological effects – Measurement of thermal and water- vapour resistance under steady-state conditions (sweating guarded -hotplate test) (Geneva: ISO, 2014).
- 18. Huang J. Review of Heat and Water Vapour Transfer Through Multilayer Fabrics. Textile Research Journal 2016; 86(3): 325-336.
- 19. Mladen Stancic, Nemanja Kasikovic, Dragana Grujic, Dragoljub Novakovic, Rastko Milosevic Milosevic, Branka Ruzicic, Jelka Gersak. Mathematical Model for Water Vapour Resistance Prediction of Printed Garments, Society of Dyers and Colourists. Color. Technol, 2017; 134: 82-88.
- 20. Kazani I, de Mey G, Hertleer C, van Langenhove L, Guxho G. Influence of Screen Printed Layers on the Thermal Conductivity of Textile Fabrics. FIBRES & TEXTILES in Eastern Europe 2018; 26, 5(131): 70-74. DOI: 10.5604/01.3001.0012.2534.
- 21. Eldeeb M, Demir A. Optimising the Production Process of Rieter Air Jet Spun Yarns and a Model for Prediction of their Strength. FIBRES & TEXTILES in Eastern Europe 2018; 26, 1(127): 36-41. DOI: 10.5604/01.3001.0010.7794.
- 22. Płonka S, Drobina R, Jędrzejczyk D, Postrożny J. Selection of Optimal Thermochemical Treatment of Steel Guides of Yarn. FIBRES & TEXTILES in Eastern Europe 2019; 27, 6(138): 27-33. DOI: 10.5604/01.3001.0013.4464.
- 23. Hong C, Chen S. Optimisation of Multi-Response Surface Parameters of the Roving Twist Factor and Spinning Back Zone Draft. FIBRES & TEXTILES in Eastern Europe 2019; 27, 5(137): 28-33. DOI: 10.5604/01.3001.0013.2898.
- 24. Ünal C, Yüksel AD. Cut Order Planning Optimisation in the Apparel Industry. FIBRES & TEXTILES in Eastern Europe 2020; 28, 1(139): 8-13. DOI: 10.5604/01.3001.0013.5851.
- 25. Pruś S, Kulpiński P, Matyjas-Zgondek E. Changes in the Specific Charge Amount on the Surface of Cotton Fibres during the Alkali Pre-treatment Process. FIBRES & TEXTILES in Eastern Europe 2019; 27, 4(136): 30-37. DOI: 10.5604/01.3001.0013.1817.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0b96e71-520c-4725-8cd4-708718f2eefe