PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phase, microstructure and microwave dielectric properties of Mg0:95Ni0:05 Ti0:98Zr0:02O3 ceramics

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mg0.95Ni0.05 Ti0.98Zr0.02O3 ceramics was prepared via conventional solid-state mixed-oxide route. The phase, microstructure and microwave dielectric properties of the sintered samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and a vector network analyzer. The microstructure comprised of circular and elongated plate-like grains. The semi quantitative analysis (EDS) of the circular and elongated grains revealed the existence of Mg0.95Ni0.05 T2O5 as a secondary phase along with the parent Mg0.95Ni0.05 Ti0.98Zr0.02O3r~17.1, Qufo~195855 ± 2550 GHz and tf ~ -46 ppm/K was achieved for the synthesized Mg0.95Ni0.05 Ti0.98Zr0.02O3 ceramics sintered at 1325 °C for 4 h.
Słowa kluczowe
Wydawca
Rocznik
Strony
95--99
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Department of Physics, University of Science and Technology Bannu, Bannu 28100, Khyber Pakhtunhwa, Pakistan
autor
  • Department of Physics, University of Science and Technology Bannu, Bannu 28100, Khyber Pakhtunhwa, Pakistan
autor
  • Schools of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
autor
  • Department of Physics, Islamia College University Peshawar, Peshawar 25120, Khyber Pakhtunhwa, Pakistan
Bibliografia
  • [1] SEBASTIAN M.T., Dielectric Materials for Wireless Communication, 1st Edition, Elsevier Science, (2008).
  • [2] CHIA C.T., Ferroelectrics., 435 (2012), VII.
  • [3] REANEY I.M., IDDLES D., J. Am. Ceram. Soc., 89 (2006), 2063.
  • [4] HUANG C.L., LIU S.S., J. Alloy. Compd., 471 (2009), L9.
  • [5] TAMURA H., KONOIKE T., SAKABE Y., WAKINO K., J. Am. Ceram. Soc., 67 (1984), C59.
  • [6] NOMURA S., KANETA K., Jpn. J. Appl. Phys., 33 (1984), 507.
  • [7] ONADA M., KUWATA J., KANETA K., TOYAMA K., NOMURA S., Jpn. J. App. Phys., 21 (1982), 1707.
  • [8] KIM B.K., HAMAGUCHI H., KIM I.T., HONG K.S., J. Am. Ceram. Soc., 78 (1995), 3117.
  • [9] REANEY I.M., QAZI I., LEE W.E., J. Appl. Phys., 88 (2000), 6708.
  • [10] CHAI L., AKBAS M.A., DAVIES P.K., PARISE J.B., Mater. Res. Bull., 33 (1998), 1261.
  • [11] WAKINO K., Ferroelectrics, 91 (1989), 69.
  • [12] HUANG C.L., LIU S.S., Jpn. J. Appl. Phys., 46 (2007), 283.
  • [13] SOHN J.H., INAGUMA Y., YOON S.O., ITOH M., NAKAMURA T., YOON S.J., KIM H. J., Jpn. J. Appl. Phys., 33 (1994), 5466.
  • [14] TSENG C.F., J. Am. Ceram. Soc., 91 (2008), 4125.
  • [15] MANAN A., HUSSAIN I., Int. J. Mod. Phys. B, 28 (2014), 1450092.
  • [16] SHANNON R.D., Acta Crystallogr. A, 32 (1976), 751.
  • [17] TSENG C.F., HSU C.H., J. Am. Ceram. Soc., 92 (2009), 1149.
  • [18] IQBAL Y., MANAN A., J. Mater. Sci.-Mater. El., 23 (2012), 536.
  • [19] SHEN C.H., HUANG C.L., J. Am. Ceram. Soc., 92 (2009), 384.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0b84a75-d493-4d6e-babb-ae195f6e395c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.