PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synteza modyfikowanych oligonukleotydów zawierających stereozdefiniowane internukleotydowe wiązania tiofosforanowe

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Synthesis of modified oligonucleotides containing stereodefined internucleotide phosphorothioate bonds
Języki publikacji
PL
Abstrakty
EN
Synthetic oligonucleotides constitute an important class of compounds which can exhibit biological activity. As potential drugs they could be employed in antisense strategy by acting on the pathogenic mRNA, causing inactivation of the target molecules during the translation process [1]. Ideal antisense agent (ASO) should be resistant to exo and/or endonucleases, exhibit a suitable pharmacological and pharmacokinetic profile and exhibits high binding affinity towards the target mRNA. To improve some properties of the ASO plethora of the chemical modifications introduced within the nucleobase, sugar unit and internucleotide linkage are investigated [3]. Among them, phosphorothioate oligonucleotides (PS-oligo), created by replacing one of the nonbridging oxygen atoms with a sulfur atom, are the major representatives of DNA analogs. PS-oligo display several attractive features like nuclease resistance, activation of RNase H, and good pharmacokinetic properties [1]. Replacement of one of two nonbridging oxygens at phosphorus by sulfur induces asymmetry at the phosphorus atom. Hence, the synthesized oligo(nucleoside phosphorothioate) is a mixture of 2n diastereomers (where n is the number of internucleotide phosphorothioate functions). Therefore the actual biological activity of the P-chiral oligonucleotide analogues, (e.g., interactions with proteins or nucleic acids) may depend on stereochemical factors [7]. One has to keep in mind that the phosphoramidite [5] and H-phosphonate [32] methodologies (commonly used to prepare PS-oligo) are nonstereospecific and give a mixture of 2n diastereomers. Thus, various methods have been elaborated to synthesize these P-chiral oligonucleotide analogs in a stereocontrolled manner [15, 17], among them the oxathiaphospholane method developed by Stec et al. [18], the method utilizing nucleoside 3’-O-(3-N-acyl)oxazaphospholidine derivatives as monomer units [19], and the method based on a stereoselective synthesis of nucleoside 3’-O-oxazaphospholidine monomers [21, 22] are the most significant.
Rocznik
Strony
957--981
Opis fizyczny
Bibliogr. 32 poz., schem.
Twórcy
  • Centrum Badań Molekularnych i Makromolekularnych Polskiej Akademii Nauk, Zakład Chemii Bioorganicznej ul. Sienkiewicza 112, 90-363 Łódź
autor
  • Centrum Badań Molekularnych i Makromolekularnych Polskiej Akademii Nauk, Zakład Chemii Bioorganicznej ul. Sienkiewicza 112, 90-363 Łódź
autor
  • Wydział Matematyczno-Przyrodniczy, Instytut Chemii i Ochrony Środowiska, Akademia im. Jana Długosza al. Armii Krajowej 13/15, 42-200 Częstochowa
Bibliografia
  • [1] Y.C. Zhang, M.M. Taylor, W.K. Samson, M.I. Phillips, Methods in Molecular Medicine, Antisense Therapeutics, 2nd ed. (Edited by: I. Phillips © Humana Press Inc., Totowa, NJ), 2005, 106, 11.
  • [2] L. Vidal, S. Blagden, G. Attard, J. de Bono, Eur. J. Cancer, 2005, 41, 2812.
  • [3] J. Kurreck, Eur. J. Biochem., 2003, 270, 1628.
  • [4] a) F. Eckstein, Tetrahedron Lett., 1967, 8, 1157; b) F. Eckstein, Tetrahedron Lett., 1967, 8, 3495.
  • [5] M.D. Matteucci, M.H. Caruthers, J. Am. Chem. Soc., 1981, 103, 3185.
  • [6] W. J. Stec, G. Zon, W. Egon, B. Stec, J. Am. Chem. Soc., 1984, 106, 6077.
  • [7] W.J. Stec, A. Wilk, Angew. Chem. Int. Ed. English, 1994, 33, 709.
  • [8] a) E. Ohtsuka, M. Shiraishi, M. Ikehara, Tetrahedron, 1985, 41, 5271; b) Hayakawa, Y. Hirabayashi, M. Hyodo, S. Yamashita, T. Matsunami, D.M-. Cui, R. Kawai, H. Kodama, Eur. J. Org. Chem., 2006, 3834.
  • [9] a) P.M.J. Burgers, F. Eckstein, Proc. Natl. Acad. Sci. U. S. A., 1978, 75, 4798; b) P.M.J. Burgers, F. Eckstein, Biochemistry, 1979, 18, 592.
  • [10] K.K. Chacko, K. Lindner, W. Saenger, P.S. Miller, Nucleic Acids Res., 1983, 11, 2801.
  • [11] J.K. Frederiksen, J.A. Piccirilli, Methods Enzymol., 2009, 468, 289.
  • [12] a) A. Wilk, W.J. Stec, Nucleic Acids Res., 1995, 23, 530; b) Y. Tamura, H. Miyoshi, T. Yokota, K. Makino, A. Murakami, Nucleosides Nucleotides, 1998, 17, 269.
  • [13] R. Cosstick, F. Eckstein, Biochemistry, 1985, 24, 3630.
  • [14] a) H. Matzura, F. Eckstein, Eur. J. Biochem., 1968, 3, 448; b) F. Eckstein, V.W. Armstrong, H. Sternbach, Proc. Natl. Acad. Sci. U. S. A., 1976, 73, 2987; c) P.M.J. Burgers, F. Eckstein, J. Biol. Chem., 1979, 254, 6889.
  • [15] a) T. Wada, N. Kobayashi, T. Mori, M. Sekine, Nucleosides Nucleotides, 1998, 17, 351; b) K. Seio, K. Kumura, J.-C. Bologna, M. Sekine, J. Org. Chem., 2003, 68, 3849.
  • [16] H. Almer, J. Stawinski, R. Stromberg, J. Chem. Soc., Chem. Commun., 1994, 1459.
  • [17] Y. Hayakawa, Y. Hirabayashi, M. Hyodo, S. Yamashita, T. Matsunami, D.-M. Cui, R. Kawai, H. Kodama, Eur. J. Org. Chem., 2006, 3834.
  • [18] a) W.J. Stec, A. Grajkowski, B. Karwowski, A. Kobylańska, M. Koziołkiewicz, K. Misiura, A. Okruszek, A. Wilk, P. Guga, M. Boczkowska, J. Am. Chem. Soc., 1995, 117, 12019; b) W.J. Stec, B. Karwowski, M. Boczkowska, P. Guga, M. Koziołkiewicz, M. Sochacki, M.W. Wieczorek, J. Błaszczyk, J. Am. Chem. Soc., 1998, 120, 7156.
  • [19] A. Wilk, A. Grajkowski, L.R. Phillips, S.L. Beaucage, J. Am. Chem. Soc., 2000, 122, 2149.
  • [20] V.A. Efimov, A.A. Buryakova, S.V. Reverdatto, O.G. Chakhmakhcheva, Yu. A., Ovchinnikov, Nucleic Acids Res., 1983, 11, 8369.
  • [21] V.A. Efimov, N.S. Molchanova, O.G. Chakhmakhcheva, Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1087.
  • [22] H. Almer, T. Szabo, J. Stawinski, Chem. Commun., 2004, 290.
  • [23] a) Y. Lu, G. Just, Angew. Chem., Int. Ed., 2000, 39, 4521; b) R.P. Iyer, D. Yu, N.-H. Ho, W. Tan, S. Agrawal, Tetrahedron: Asymmetry, 1995, 6, 1051; c) R.P. Iyer, M.-J. Guo, D. Yu, S. Agrawal, Tetrahedron Lett., 1998, 39, 2491.
  • [24] a) N. Oka, T. Wada, K. Saigo, J. Am. Chem. Soc., 2003, 125, 8307.
  • [25] N. Oka, M. Yamamoto, T. Sato, T. Wada, J. Am. Chem. Soc., 2008, 130, 16031.
  • [26] M.D. De Smert, C.J. Meenken, G.J., van den Horn, Ocul. Immunol. Inflamm., 1999, 7, 189.
  • [27] H.L. Lightfoot, J. Hall, Nucleic Acids Res., 2012, 40, 10585.
  • [28] Dane zaczerpnięte ze strony internetowej: www.fda.gov/newsevents/newsroom/pressannouncements/ucm337195.htm.
  • [29] D.A. Brown, S.H. Kang, S.M. Gryaznov, L. DeDionisio, O. Heidenreich, S. Sullivan, X. Xu, M.I. Nerenberg, J. Biol. Chem., 1994, 269, 26801.
  • [30] N. Dias, C.A. Stein, Mol. Cancer Ther., 2002, 1, 347.
  • [31] H. Jahns, M. Roos, J. Imig, F. Baumann, Y. Wang, R. Gilmour, J. Hall, Nature Comm., 6, 2015, Article nr: 6317, doi:10.1038/ncomms7317
  • [32] (a) B.C. Froehler, Tetrahedron Lett., 1986, 27, 5575; (b) B.C. Froehler, [w:] Methods in Molecular Biology, Vol. 20: Protocols for Oligonucleotides and Analogues, S. Agrawal (Red.), Humana Press Inc., Totowa, NJ, 1993, str. 63.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0b6aa15-c638-4681-ba3e-ce4f8a843efb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.