PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Functional groups in microalgal extracellular polymeric substances: A promising biopolymer for microplastic mitigation in marine ecosystems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to characterise the amounts of EPS produced and the chemical functional groups of three different microbial phyla, namely Chlorophyta (Dunaliella sp.), Bacillariophyta (Phaeodactylum sp.), and Cyanobacteria (Spirulina sp.). Microalgae of Dunaliella sp., Phaeodactylum sp. and Spirulina sp. were grown in culture media with continuous aeration and lighting and controlled temperature. At the beginning of the stationary phase, the culture medium was centrifuged, ethanol precipitated, dialysed with deionised water and freeze-dried to produce white EPS biopolymer. The dry EPS weight of microalgae Dunaliella sp., Phaeodactylum sp. and Spirulina sp. were 0.356±0.01 gL-1, 0.245±0.02 gL-1and 0.477±0.02 gL-1, respectively. In the present study we used micro scopic Fourier-Transform Infrared Spectroscopy (FTIR) to investigate functional group of EPS microalgae. The Fourier Transform Infrared (FTIR) spectra of all three exopolysaccharides (EPS) reveal key similarities, including O-H stretching vibrations around 3500 cm-1, indicative of hydroxyl groups that enhance hydrophilicity, and C=O stretching vibrations between 1700–1600 cm-1, suggesting the presence of carbonyl groups. These functional groups, along with C-H stretching vibrations around 2920–2850 cm-1 linked to aliphatic hydrocarbons, contribute to the structural integrity, solubility, and versatility of EPS in biological and industrial applications. The study concludes that EPS-producing microalgae hold significant potential for mitigating microplastic pollution through aggregation and possible biodegradation, especially in marine environments.
Twórcy
  • Doctoral Students at Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jl. Veteran Malang 65145, Indonesia
  • Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jl. Veteran Malang 65145, Indonesia
autor
  • Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jl. Veteran Malang 65145, Indonesia
  • Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jl. Veteran Malang 65145, Indonesia
Bibliografia
  • 1. Abdelfattah, A., Ali, S. S., Ramadan, H., El-Aswar, E. I., Eltawab, R., Ho, S. H., ... and Sun, J. (2023). Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. Environmental science and ecotechnology, 13, 100205. https://doi.org/10.1016/j.ese.2022.100205
  • 2. Aflori, M., Serbezeanu, D., Ipate, A. M., Dobos, A. M., and Rusu, D. (2024). Development of New Polyimide/Spirulina Hybrid Materials: Preparation and Characterization. Journal of composites science, 8(5), 178. https://doi.org/10.3390/jcs8050178
  • 3. Andreeva, A., Budenkova, E., Babich, O., Сухих, С., Dolganyuk, V., Michaud, P., … and Иванова, С. (2021). Influence of carbohydrate additives on the growth rate of microalgae biomass with an increased carbohydrate content. Marine drugs, 19(7), 381. https://doi.org/10.3390/md19070381
  • 4. Araj‐Shirvani, M. (2024). Biochemical profile of dunaliella isolates from different regions of iran with a focus on pharmaceutical and nutraceutical potential applications. Food science and nutrition, 12(7), 4914-4926. https://doi.org/10.1002/fsn3.4137
  • 5. Babiak, W., and Krzemińska, I. (2021). Extracellular polymeric substances (EPS) as microalgal bioproducts: A review of factors affecting EPS synthesis and application in flocculation processes. Energies, 14(13). MDPI AG. https://doi.org/10.3390/ en14134007
  • 6. Babich, O., Dolganyuk, V., Andreeva, A., Katserov, D., Matskova, L., Ulrikh, E., … and Сухих, С. (2022). Isolation of valuable biological substances from microalgae culture. Foods, 11(11), 1654. https://doi.org/10.3390/foods11111654
  • 7. Barnes, D.K.A., Galgani, F., Thompson, R.C., and Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical transactions of the royal society B: biological sciences, 364(1526), 1985–1998. https://doi.org/10.1098/rstb.2008.0205
  • 8. Beltrame, G., Trygg, J., Hemming, J., Han, Z., and Yang, B. (2021). Comparison of polysaccharides extracted from cultivated mycelium of inonotus obliquus with polysaccharide fractions obtained from sterile conk (Chaga) and birch heart rot. Journal of fungi, 7(3), 1–21. https://doi.org/10.3390/ jof7030189
  • 9. Boonchai, R., Kaewsuk, J., and Seo, G. (2015). Effect of nutrient starvation on nutrient uptake and extracellular polymeric substance for microalgae cultivation and separation. Desalination and water treatment, 55(2), 360–367. https://doi.org/10.1080 /19443994.2014.939501
  • 10. Cheng, Y.R., and Wang, H.Y. (2022). Highly effective removal of microplastics by microalgae Scenedesmus abundans. Chemical engineering journal, 435. https://doi.org/10.1016/j.cej.2022.135079
  • 11. Chentir, I., Hamdi, M., Doumandji, A., HadjSadok, A., Ouada, H. Ben, Nasri, M., and Jridi, M. (2017). Enhancement of extracellular polymeric substances (EPS) production in Spirulina (Arthrospira sp.) by two-step cultivation process and partial characterization of their polysaccharidic moiety. International journal of biological macromolecules, 105, 1412–1420. https://doi.org/10.1016/j. ijbiomac.2017.07.009
  • 12. Delattre, C., Pierre, G., Laroche, C., and Michaud, P. (2016). Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnology advances, 34(7), 1159–1179. https://doi.org/10.1016/j.biotechadv.2016.08.001
  • 13. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017
  • 14. Gammoudi, S., Moussa, I., Annabi-Trabelsi, N., Ayadi, H., and Guermazi, W. (2021). Antioxidant properties of metabolites from new extremophiles microalgal strain (southern, tunisia). https://doi.org/10.5772/intechopen.96777
  • 15. Gopalakrishnan, K., and Kashian, D.R. (2022). Extracellular polymeric substances in green alga facilitate microplastic deposition. Chemosphere, 286, 131814. https://doi.org/10.1016/j. chemosphere.2021.131814
  • 16. Hale, R.C., Seeley, M.E., La Guardia, M.J., Mai, L., and Zeng, E.Y. (2020). A Global Perspective on Microplastics. Journal of geophysical research: oceans, 125(1), 1–40. https://doi.org/10.1029/2018JC014719
  • 17. Hasan, H.A., Rahim, N.F.M., Alias, J., Ahmad, J., Said, N.S.M., Ramli, N.N., ... and Kurniawan, S.B. (2024). A Review on the Roles of Extracellular Polymeric Substances (EPSs) in Wastewater Treatment: Source, Mechanism Study, Bioproducts, Limitations, and Future Challenges. Water, 16(19), 2812. https://doi.org/10.3390/w16192812
  • 18. Isah, U.A., Rashid, M.I., Lee, S., Kiman, S., and Iyodo, H.M. (2024). Correlations of coal rank with the derived Fourier Transform Infra-Red (FTIR) spectroscopy structural parameters: A review. Infrared physics and technology, 105456. https://doi.org/10.1016/j.infrared.2024.105456
  • 19. Joseph, S., Dineshram, R., and Mohandass, C. (2021). Photoinhibition and β-carotene production from dunaliella sp. isolated from salt pans of goa. https://doi.org/10.21203/rs.3.rs-344412/v1
  • 20. Kilic, N.K., Erdem, K., and Donmez, G. (2019). Bioactive compounds produced by Dunaliella species, antimicrobial effects and optimization of the efficiency. Turkish Journal of Fisheries and Aquatic Sciences, 19(11), 923-933. http://doi.org/10.4194/1303-2712-v19_11_04
  • 21. Liu, J., Zhu, C., Li, Z., and Zhou, H. (2022). Screening of Spirulina strains for high copper adsorption capacity through Fourier transform infrared spectroscopy. Frontiers in microbiology, 13, 952597. https://doi.org/10.3389/fmicb.2022.952597
  • 22. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. The journal of biological chemistry, 193(1), 265–275. https://doi.org/10.1016/ s0021-9258(19)52451-6
  • 23. Mohammad, H., Tawfeek, F., Eltanahy, E., Mansour, T., and Khalil, Z. (2022). Enhancement of growth, lipid, and carbohydrate production of the egyptian isolate dunaliella salina sa20 using mozzarella cheese whey as a growth supplement. Egyptian journal of botany, 0(0), 0-0. https://doi.org/10.21608/ejbo.2022.145428.2020
  • 24. Nagahawatta, D.P., Liyanage, N.M., Jayawardena, T.U., Yang, F., Jayawardena, H.H.A.C.K., Kurera, M.J.M.S., ... and Jeon, Y.J. (2023). Functions and values of sulfated polysaccharides from seaweed. Algae, 38(4), 217-240. https://doi.org/10.4490/ algae.2023.38.12.1
  • 25. Naveen, K.V., Sathiyaseelan, A., Mandal, S., Han, K., and Wang, M.H. (2023). Unveiling the Structural Characteristics and Bioactivities of the Polysaccharides Extracted from Endophytic Penicillium sp. Molecules, 28(15), 5788. https://doi.org/10.3390/ molecules28155788
  • 26. Peng, S., Hu, A., Ai, J., Zhang, W., and Wang, D. (2021). Changes in molecular structure of extracellular polymeric substances (EPS) with temperature in relation to sludge macro-physical properties. Water research, 201, 117316. https://doi.org/10.1016/j. watres.2021.117316
  • 27. Rajasekar, P., Palanisamy, S., Anjali, R., Vinosha, M., Elakkiya, M., Marudhupandi, T., ... and Prabhu, N.M. (2019). Isolation and structural characterization of sulfated polysaccharide from Spirulina platensis and its bioactive potential: In vitro antioxidant, antibacterial activity and Zebrafish growth and reproductive performance. International journal of biological macromolecules, 141, 809-821. https://doi.org/10.1016/j.ijbiomac.2019.09.024
  • 28. Senousy, H., El‐Sheekh, M., Saber, A., Khairy, H., Said, H., Alhoqail, W., … and Abu-Elsaoud, A. (2022). Biochemical analyses of ten cyanobacterial and microalgal strains isolated from egyptian habitats, and screening for their potential against some selected phytopathogenic fungal strains. Agronomy, 12(6), 1340. https://doi.org/10.3390/ agronomy12061340
  • 29. Shiu, R.F., Vazquez, C.I., Chiang, C.Y., Chiu, M.H., Chen, C.S., Ni, C.W., Gong, G.C., Quigg, A., Santschi, P.H., and Chin, W.C. (2020). Nano- and microplastics trigger secretion of protein-rich extracellular polymeric substances from phytoplankton. Science of the total environment, 748, 141469. https://doi.org/10.1016/j.scitotenv.2020.141469
  • 30. Silva, M.B.F., Azero, E.G., Teixeira, C.M.L.L., and Andrade, C.T. (2020). Influence of culture conditions on the production of extracellular polymeric substances (EPS) by Arthrospira platensis. Bioresources and bioprocessing, 7(1). https://doi.org/10.1186/s40643-020-00337-3
  • 31. Singh, K.S., Majik, M.S., and Tilvi, S. (2014). Vibrational spectroscopy for structural characterization of bioactive compounds. Comprehensive analytical chemistry, 65, 115-148). https://doi.org/10.1016/B978-0-444-63359-0.00006-9
  • 32. Song, C., Liu, Z., Wang, C., Li, S., and Kitamura, Y. (2020). Different interaction performance between microplastics and microalgae: The bio-elimination potential of Chlorella sp. L38 and Phaeodactylum tricornutum MASCC-0025. Science of the total environment, 723. https://doi.org/10.1016/j. scitotenv.2020.138146
  • 33. Song, C., Sun, X. F., Xing, S. F., Xia, P. F., Shi, Y. J., and Wang, S. G. (2014). Characterization of the interactions between tetracycline antibiotics and microbial extracellular polymeric substances with spectroscopic approaches. Environmental science and pollution research, 21(3), 1786–1795. https://doi.org/10.1007/s11356-013-2070-6
  • 34. Sutrisno. (2018). Struktur Organik Dari Spektra Massa, Uv-Vis, dan IR (Cetakan I). PT. Book Mart Indonesia.
  • 35. Tsuji, Y. (2024). Assessing target of rapamycin (tor) activity in the diatomphaeodactylum tricornutumusing commercially available materials. https://doi.org/10.1101/2024.03.28.587301
  • 36. Xiao, R., and Zheng, Y. (2016). Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnology advances, 34(7), 1225–1244. https://doi.org/10.1016/j.biotechadv.2016.08.004
  • 37. Yu, X., Huang, C., Wang, D., Chen, J., Li, H., Liu, X., … and Wang, Z. (2019). High-throughput biochemical fingerprinting of oleaginous aurantiochytrium sp. strains by fourier transform infrared spectroscopy (ft-ir) for lipid and carbohydrate productions. Molecules, 24(8), 1593. https://doi.org/10.3390/molecules24081593
  • 38. Zhang, W., Tang, X., Yang, Y., Zhang, X., and Zhang, X. (2020). Elevated p CO2 level affects the extracellular polymer metabolism of Phaeodactylum tricornutum. Frontiers in microbiology, 11, 339. https://doi.org/10.3389/fmicb.2020.00339
  • 39. Zhao, T., Han, X., He, L., Jia, Y., and Yu, R. (2022). Fourier transform infrared spectrometry detection of phaeodactylum tricornutum biomacromolecules in response to environmental changes. Acs omega, 8(1), 702-708. https://doi.org/10.1021/acsomega.2c05933
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0b5d1bb-60f6-456d-a15c-f4aa033bdebb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.