PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Perowskity : przyszłość technologii fotowoltaicznej

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Perovskites : the future of photovoltaic technology
Języki publikacji
PL
Abstrakty
EN
The rapid technological development necessitates the creation of increasingly new and more efficient solutions in photovoltaics, where the concept of perovskite solar cells is playing an ever-growing role. Perovskites, as an extensive and diverse group of chemical compounds characterized by a specific ABX3 crystal structure, exhibit exceptional electrical and optical properties, making them one of the most attractive groups for applications in modern photovoltaics. The following review article illustrates how the understanding of perovskite solar cells has evolved over the past decade. It emphasizes the significant role that scientists worldwide have played in addressing various challenges, such as the stability and durability of perovskites under harsh conditions. The research findings also highlight the importance of designing new perovskite compositions that exhibit increased stability and lower degradation rates. Scientists are also exploring innovative encapsulation techniques to protect the perovskite layers from environmental factors, which is crucial for ensuring their long-term performance. As a result of their research, there has been an improvement in the efficiency of solar energy conversion in modern cells, enabling them to compete with conventional silicon technologies, while the potential of tandem solutions presents new opportunities for their development.
Rocznik
Strony
1585--1605
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
  • Wydział Technologii i Inżynierii Chemicznej, Politechnika Bydgoska im. Jana i Jędrzeja Śniadeckich, Seminaryjna 3, Bydgoszcz, 85-326, Polska
Bibliografia
  • [1] H.J. Goldschimidt, J.R. Rait, Nature, 1943, 152, 356.
  • [2] H.D. Megaw, Proc. Phys. Soc., 1946, 58, 133.
  • [3] V.M. Goldschmidt, Geochem. Vert. Elem., 1927, 7, 8.
  • [4] A. Hoffmann, Z. Phys. Chem., 1935, 28, 6.5
  • [5] S. Naray-Szabo, Naturw'ssenschaften, 1943, 31, 203.
  • [6] H.D. Megaw, Nature, 1945, 155, 484.
  • [7] H.P. Rooksby, Nature, 1945, 152, 304.
  • [8] H.P. Rooksby, Nature, 1945, 155, 484.
  • [9] S. Feng, Y. Zhang, H. Hou, C. Wen, X. Dong, W. Shi, R. Lv, M. Fu, J. Liu, J. Lu, L. Duan, M. Han, B. Zheng, L. Gao, Adv. Electron. Mater. 2024, 10, 2300867.
  • [10] K. Kerman, S. Ramanathan, J. Baniecki, M. Ishii, Y. Kotaka, H. Aso,K. Kurihara, R. Schafranek, A. Vailionis, Appl. Phys. Lett. 2013, 103,173904.
  • [11] Y. Takada, J. Phys. Soc. Jpn. 1980, 49, 1267.
  • [12] W. Luo, W. Duan, S.-G. Louie, M.-L. Cohen, Phys. Rev. B, 2004, 70, 214109.
  • [13] J. Fan, B. Jia, M. Gu, Photonics Res., 2014, 2, 111.
  • [14] H. Chen, Z. Wei, K. Yan, Y, Yi, J. Wang, S. Yang, Faraday Discuss., 2014, 176, 271.
  • [15] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater., 2014, 13, 897.
  • [16] M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, G. Bongiovann, Nat. Commun., 2014, 5, 5049.
  • [17] V. W. Bergmann, S. A. L. Weber, F. J. Ramos, M. K. Nazeeruddin, M. Gratzel, D. Li, A. L. Domanski, I. Lieberwirth, S. Ahmad, R. Berge, Nat. Commun., 2014, 5, 5001.
  • [18] W. Zhang, M. Anaya, G. Lozano, M. E. Calvo, M. B. Johnston, H. Míguez, H.J. Snaith, Nano Lett. 2015, 15, 1698.
  • [19] Z. Zhang, X. Yue, D. Wei, M. Li, P. Fu, B. Xie, D. Songa, Y. Li, RSC Adv., 2015, 5, 104606.
  • [20] T. Krishnamoorthy, H. Ding, C. Yan, W. L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, S. G., J. Mater. Chem. A, 2015, 3, 23829.
  • [21] G. Pilania, A. Mannodi-Kanakkithodi, B. P. Uberuaga, R. Ramprasad, J. E. Gubernatis, T. Lookman, Sci Rep. 2016, 6, 19375.
  • [22] M. Anaya, G. Lozano, M. E. Calvo, H. Miguez, Joule 2017, 1, 769.
  • [23] J. Zeitouny, E. A. Katz, A. Dollet, A. Vossier, Sci. Rep. 2017, 7, 1766.
  • [24] A. Abate, Joule 2017, 1, 659.
  • [25] G.W. P. Adhyaksa, S. Brittman, H. Abolinš, A. Lof, X. Li, J. D. Keelor, Y. Luo, T. Duevski, R. M. A. Heeren, S. R. Ellis, D. P. Fenning, E. C. Garnet, Adv. Mater., 2018, 30, 1804792.
  • [26] T. Zhang, M. Long, M. Qin, X. Lu, S. Chen, F. Xie, L. Gong, J. Chen, M. Chu, Q. Miao, Z. Chen, W. Xu, P. Liu, W.Xie, J.-b. Xu, Joule 2018, 2, 2706.
  • [27] M. Kim, G.-H. Kim, T. K. Lee, I. W. Choi, H. W. Choi, Y. Jo, Y. J. Yoon, J. W. Kim, J. Lee, D. Huh, H. Lee, S. K. Kwak, J. Y. Kim, D. S. Kim, Joule 2019, 3, 2179.
  • [28] M. V. Khenkin, E. A. Katz ,  A. Abate, G. Bardizza, J. J. Berry  , C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo , R. Cheacharoen, Y.-B. Cheng, A. Colsmann , S. Cros, K. Domanski , M. Dusza, C. J. Fell , S. R. Forrest, Y. Galagan  , D. Di Girolamo, M. Grätzel, A. Hagfeldt  , E. von Hauff, H. Hoppe, J. Kettle, H. Köbler  , M. S. Leite , S. (Frank) Liu, Y.-L. Loo , J. M. Luther , C.-Q. Ma , M. Madsen , M. Manceau, M. Matheron , M. McGehee , R. Meitzner, M. K. Nazeeruddin , A. F. Nogueira , Ç. Odabaşı , A. Osherov, N.-G. Park , M. O. Reese, F. De Rossi, M. Saliba , U. S. Schubert , H. J. Snaith , S. D. Stranks , W. Tress , P. A. Troshin, V. Turkovic, S. Veenstra , I. Visoly-Fisher, A. Walsh , T. Watson , H. Xie, R. Yıldırım , S. M. Zakeeruddin, K. Zhu , M. Lira-Cantu, Nat. Energy 2020, 5, 35.
  • [29] J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, J. Y. Kim, Nature 2021, 592, 381.
  • [30] X. Yang, D. Luo, Y. Xiang, L. Zhao, M. Anaya, Y. Shen, J. Wu, W. Yang, Y.-H. Chiang, Y. Tu, R. Su, Q. Hu, H. Yu, G. Shao, W. Huang, T. P. Russell, Q. Gong, S. D. Stranks, W. Zhang, R. Zhu, Adv. Mater., 2021, 33, 2006435.
  • [31] A. Farag, T. Feeney, I. M. Hossain, F. Schackmar, P. Fassl, K. Küster, R. Bäuerle, M. A. Ruiz-Preciado, M. Hentschel, D. B. Ritzer, A. Diercks, Y. Li, B. A. Nejand, F. Laufer, R. Singh, U. Starke, U. W. Paetzold, Adv. Energy Mater. 2023, 13, 2203982.
  • [32] J. Suo, B. Yang, E. Mosconi, D. Bogachuk, T. A. S. Doherty, K. Frohna, D. J. Kubicki, F. Fu, Y. Kim, O. Er-Raji, T. Zhang, L. Baldinelli, L. Wagner, A. N. Tiwari, F. Gao, A. Hinsch, S. D. Stranks, F. De Angelis, A. Hagfeldt, Nat. Energy 2024, 9, 172.
  • [33] Y. Chen, Z. Yang, M. Wang, Y. Zhang, Y. Bao, L. Shi, G. Cao, L. Qin, X. Li, Nano Energy 2024, 13215, 110366.
  • [34] Z. Ding, C. Kan, S. Jiang, M. Zhang, H. Zhang, W. Liu, M. Liao, Z. Yang, P. Hang, Y. Zeng, X. Yu, J. Ye, Nat Commun. 2024, 15, 8453.
  • [35] M. R. Golobostanfard, M. Othman, D. Turkay, K. Artuk, X. Y. Chin, M. D. Mensi, D. A. Jacobs, Q. Jeangros, C. M. Wolff, A. Hessler-Wyser, C. Ballif, Nano Energy 2024, 131, 110269.
  • [36] Y. Pan, J. Wang, Z. Sun, J. Zhang, Z. Zhou, C. Shi, S. Liu, F. Ren, R. Chen, Y. Cai, H. Sun, B. Liu, Z. Zhang, Z. Zhao, Z. Cai, X. Qin, Z. Zhao, Y. Ji, N. Li, W. Huang, Z. Liu, W. Chen, Nat Commun. 2024, 15, 7335.
  • [37] F. Pei, Y. Chen, Q. Wang, L. Li, Y. Ma, H. Liu, Y. Duan, T. Song, H. Xie, G. Liu, N. Yang, Y. Zhang, W. Zhou, J. Kang, X. Niu, L. Li, F. Wang, M. Xiao, G. Yuan, Y. Wu, C. Zhu, X. Wang, H. Zhou, Y. Wu, Q. Chen, Nat Commun. 2024, 15, 7024.
  • [38] C. Zhang, N. G. Park, Commun Mater 2024, 5, 194.
  • [39] A. Alasiri, K. Zubair, S. Rassel, D. Ban, O. D. Alshehri, Heliyon 2024, 10, e39141.
  • [40] X. Shen, X. Lin, Y. Peng, Y. Zhang, F. Long, Q. Han, Y. Wang, L. Han, Nano-Micro Lett. 2024, 16, 201.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0b43c0f-2b03-48e0-bc32-b455d2992f3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.