PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of pressure drop on the working volume of a hydraulic motor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reliability and maintenance analysis of hydraulic positive machines basicly focused on the processes of their wear and failure. But in order to correctly assess the mechanical and volumetric efficiency of a hydraulic motor, both at the stage of development research or at the stage of control tests during its exploitation, the working volume of this motor must be correctly determined. Therefore this paper proposes a new method of assessment of the size of the working volume of a hydraulic motor. It has been shown that the hydraulic motor absorbency per one revolution of this motor shaft is a non-linear function of pressure drop in working mechanism of the motor and non-linear function of motor rotational speed. Thus the relation between the working volume of a hydraulic motor and the pressure drop in the motor working mechanism is a non-linear function. This working volume as a funcition of pressure drop has been called the actual working volume. The correctness of the proposed method was confirmed experimentally.
Rocznik
Strony
747--757
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Faculty of Mechanical Engineering and Ship Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
Bibliografia
  • 1. Bak M. Torque capacity of multidisc wet clutch with reference to friction occurrence on its spline connections. Scientific Reports 2021; 11: 21305, https://doi.org/10.1038/s41598-021-00786-6.
  • 2. Balawender A. Analiza energetyczna i metodyka badań silników hydraulicznych wolnoobrotowych (Energy analysis and methodics of testing of low-speed hydraulic motors). Scientific book of the Gdansk University of Technology, Mechanika 1988; 54. Gdansk University of Technology Publishing House.
  • 3. Balawender A. Opracowanie metodyki wyznaczania teoretycznej objętości roboczej pomp i silników hydraulicznych wyporowych (The development of the methodology for the determination of the theoretical working volume of positive displacement pumps and hydraulic motors). PhD dissertation. Gdansk University of Technology: 1974.
  • 4. Banaszek A. Methodology of flow rate assessment of submerged hydraulic ballast pumps on modern product and chemical tankers with use of neural network methods. Procedia Computer Science 2021; 192(4): 1894-1903, https://doi.org/10.1016/j.procs.2021.08.195.
  • 5. Banaszek A, Petrovic R. Problem of non proportional flow of hydraulic pumps working with Constant pressure regulators in big power multipump power pack unit in open system. Technicki Vjesnik 2019; 26(2): 294-301, https://doi.org/10.17559/TV-20161119215558.
  • 6. Ding H. Application of non-circular planetary gear mechanism in the gear pump, Advanced Material Research 2012; 591-593: 2139–2142, https://doi.org/10.4028/www.scientific.net/AMR.591-593.2139.
  • 7. Garcia-Bravo J, Nicholson J. What is the real size of that pump? Fluid Power Journal 2018, https://fluidpowerjournal.com/real-size-pump/.
  • 8. Guo S, Chen J, Lu Y, Wang Y, Dong H. Hydraulic piston pump in civil aircraft: current status, future directions and critical technologies. Chinese Journal of Aeronautic 2020; 33(1): 16-30, https://doi.org/10.1016/j.cja.2019.01.013.
  • 9. Guzowski A, Sobczyk A. Reconstruction of hydrostatic drive and control system dedicated for small mobile platform. Proceedings of the 8th FPNI Ph.D Symposium on Fluid Power. 8th FPNI Ph.D Symposium on Fluid Power. Lappeenranta, Finland. June 11–13, 2014. V001T05A012. ASME, https://doi.org/10.1115/FPNI2014-7862.
  • 10. International Organisation for Standardization. ISO 8426:2008. Hydraulic fluid power – Positive displacement pumps and motors – Determination of derived capacity, https://www.iso.org/standard/40351.html.
  • 11. Jasinski R. Analysis of the heating process of hydraulic motors during start-up in thermal shock conditions. Energies 2022; 15(1): 55, https://doi.org/10.3390/en15010055.
  • 12. Jasinski R. Problems of the starting and operating of hydraulic components and systems in low Ambient Temperature (Part IV): modelling the heating process and determining the serviceability of hydraulic components during the starting-up in low ambient temperature. Polish Maritime Research 2017; 24(3): 45–57, https://doi.org/10.1515/pomr-2017-0089.
  • 13. Karpenko M, Bogdevicius M. Review of energy-saving technologies in modern hydraulic drives. Science – Future of Lithuania 2017; 9(5): 553-558, https://doi.org/10.3846/mla.2017.1074.
  • 14. Karpenko M, Prentkovskis O, Sukevicius S. Research on high-pressure hose with repairing fitting and influence on energy parameter of the hydraulic drive. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2022; 24(1): 25–32, http://doi.org/10.17531/ein.2022.1.4.
  • 15. Kim T, Kalbfleisch P, Ivantysynova M. The effect of cross porting on derived displacement volume. International Journal of Fluid Power 2014; 15(2): 77-85, https://doi.org/10.1080/14399776.2014.923605.
  • 16. Klarecki K, Rabsztyn D, Hetmanczyk P. Analysis of pulsation of the sliding-vane pump for selected settings of hydrostatic system. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2015; 17(3): 338–344, http://dx.doi.org/10.17531/ein.2015.3.3.
  • 17. Kollek W, Osinski P, Stosiak M, Wilczynski A, Cichon P. Problems relating to high-pressure gear micropump. Archives of Civil and Mechanical Engineering 2014; 14(1): 88-95, https://doi.org/10.1016/j.acme.2013.03.005.
  • 18. Li D, Liu Y, Gong J, Wang T. Design of a noncircular planetary gear mechanism for hydraulic motor. Mathematical Problems in Engineering 2021; https://doi.org/10.1155/2021/5510521.
  • 19. Lisowski E, Filo G, Rajda J. Analysis of the energy efficiency improvement in a load-sensing hydraulic system built on the ISO plate. Energies 2021; 14(20): 6735, https://doi.org/10.3390/en14206735.
  • 20. Luan Z, Ding M. Research on non-circular planetary gear pump. Advanced Material Research 2021; 339: 140-143, https://doi.org/10.4028/www.scientific.net/AMR.339.140.
  • 21. Manring N, Williamson C. The theoretical volumetric displacement of a check-valve type, digital displacement pump. Journal of Dynamic System, Measurement and Control 2019; 141(3), https://doi.org/10.1115/1.4041713.
  • 22. Michael P, Garcia-Bravo J. The determination of hydraulic motor displacement. Proceedings of the 17th Scandinavian International Conference on Fluid Power SICFP’21. Linkoping, Sweden. June 1-2, 2021, https://doi.org/10.3384/ecp182p188.
  • 23. Oshima S, Hirano T, Miyakawa S, Ohbayashi Y. Development of a rotary type water hydraulic pressure intensifier. JFPS International Journal of Fluid Power System 2009; 2(2): 21-26, https://doi.org/10.5739/jfpsij.2.21.
  • 24. Oshima S, Hirano T, Miyakawa S, Ohbayashi, Y. Study on the output torque of a water hydraulic planetary gear motor. Proceedings of the the Twelfth Scandinawian International Conference on Fluid Power. Tampere, Finland. May 18-20, 2011.
  • 25. Osiecki L. Mechanizmy rozrządu hydraulicznych maszyn wielotłoczkowych osiowych (Commutation units of hydraulics axial piston machines). Monografie 2006; 72. Gdansk University of Technology Publishing House.
  • 26. Osinski P, Deptula A, Partyka M. Hydraulic tests of the PZ0 gear micropump and the importance rank of its design and operating parameters. Energies 2022; 15(9): 3068, https://doi.org/10.3390/en15093068.
  • 27. Osinski P, Warzynska U, Kollek W. The influence of gear micropump body asymmetry on stress distribution. Polish Maritime Research 2017; 24(1): 60-65, https://doi.org/10.1515/pomr-2017-0007.
  • 28. Patrosz P. Influence of gaps’ geometry change on leakage flow in axial piston pumps. In: Stryczek J., Warzyńska U. (eds) Advances in Hydraulic and Pneumatic Drives and Control 2020. NSHP 2020. Lecture Notes in Mechanical Engineering. Springer, Cham., https://doi.org/10.1007/978-3-030-59509-8_7.
  • 29. Pobedza J, Sobczyk A. Properties of high-pressure water hydraulic components with modern coatings. Advanced Materials Research 2014; 849: 100-107, https://doi.org/10.4028/www.scientific.net/AMR.849.100.
  • 30. Post W. Models for steady-state performance of hydraulic pumps: determination of displacement. Proceedings of the 9th Bath International Fluid Power Workshop. University of Bath, United Kingdom. September 9-11, 1996; 9: 339-352, https://research.tue.nl/en/publications/models-for-steady-state-performance-of-hydraulic-pumps-determinat.
  • 31. Saheban Alahadi M J, Shirneshan A, Kolahdoozan M. Experimental investigation of the effect of grooves cut over the piston surface on the volumetric efficiency of a radial hydraulic piston pump. International Journal of Fluid Power 2017; 18(3): 181-187, https://doi.org/10.1080/14399776.2017.1337440.
  • 32. Schlosser W M J, Hilbrands J W. Das theoretische Hubvolumen von Verdrangerpumpen. Olhydrauli und Pneumatik 1963; 4.
  • 33. Schlosser W M J, Hilbrands J W. Das volumetrische Wirkungsgrad von Verdrongerpumpen. Olhydrauli und Pneumatik 1963; 12.
  • 34. Sliwinski P, Patrosz P. Patent PL218888 Satelitowy mechanizm roboczy hydraulicznej maszyny wyporowej (Satellite operating mechanism of the hydraulic displacement machine). 2015; https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.401821.
  • 35. Sliwinski P, Patrosz P. The influence of water and mineral oil on pressure losses in hydraulic motor. In: Stryczek J., Warzyńska U. (eds) Advances in Hydraulic and Pneumatic Drives and Control 2020. NSHP 2020. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-59509-8_10.
  • 36. Sliwinski P. Determination of the theoretical and actual working volume of a hydraulic motor. Energies 2020; 13(22): 5933, https://doi.org/10.3390/en13225933.
  • 37. Sliwinski P. Determination of the theoretical and actual working volume of a hydraulic motor – Part II (The method based on the characteristics of effective absorbency of the motor). Energies 2021; 14(6): 1648, https://doi.org/10.3390/en14061648.
  • 38. Sliwinski P, Patrosz P. Methods of determining pressure drop in internal channels of a hydraulic motor. Energies 2021; 14(18): 5669. https://doi.org/10.3390/en14185669.
  • 39. Sliwinski P. Satelitowe maszyny wyporowe. Podstawy projektowania i analiza strat energetycznych. (Satellite displacement machines. Basic of design and analysis of power loss). Monografie 2016; 155. Gdansk University of Technology Publishing House.
  • 40. Sliwinski P. The influence of water and mineral oil on volumetric losses in hydraulic motor. Polish Maritime Research 2017; 24 (s1): 213–223, https://doi.org/10.1515/pomr-2017-0041.
  • 41. Sliwinski P. The influence of water and mineral oil on mechanical losses in a hydraulic motor for offshore and marine application. Polish Maritime Research 2020; 27(2): 125-135, https://doi.org/10.2478/pomr-2020-0034.
  • 42. Stawinski L, Kosucki A, Cebulak M, Gorniak vel Gorski A, Grala M. Investigation of the influence of hydraulic oil temperature on the variable-speed pump performance. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2022; 24(2): 289–296, http://doi.org/10.17531/ein.2022.2.10.
  • 43. Stryczek S. Napęd hydrostatyczny (Hydrostatic drive). PWN: 2016.
  • 44. Toet G, Johnson J, Montague J, Torres K, Garcia-Bravo J. The determination of the theoretical stroke volume of hydrostatic positive displacement pumps and motors from volumetric measurements. Energies 2019; 12(3): 415, https://doi.org/10.3390/en12030415.
  • 45. Toet G. Die Bestimmung des theoretischen Hubvolumens von hydrostatischen Verdrangerpumen und Motoren aus volumetrischen Messungen. Olhydraulik Pnaumatik 1970; 14.
  • 46. Ulanowicz L, Jastrzebski G, Szczepaniak P. Method for estimating the durability of aviation hydraulic drives. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2020; 22(3): 557–564, http://dx.doi.org/10.17531/ein.2020.3.19.
  • 47. Volkov G, Fadyushin D V. Improvement of the method of geometric design of gear segments of a planetary rotary hydraulic machine. Journal of Physics: Conference Series 2021; 1889: 042052, https://iopscience.iop.org/article/10.1088/1742-6596/1889/4/042052.
  • 48. Volkov G, Smirnov V, Mirchuk M. Estimation and ways of mechanical efficiency upgrading of planetary rotary hydraulic machines. IOP Conference Series: Materials Science and Engineering 2020; 709: 022055, https://iopscience.iop.org/article/10.1088/1757-899X/709/2/022055.
  • 49. Volkov G, Smirnov V. Systematization and comparative scheme analysis of mechanisms of planetary rotary hydraulic machines. International Conference on Modern Trends in Manufacturing Technologies and Equipment ICMTMTE 2018; 224: 02083, https://doi.org/10.1051/matecconf/201822402083.
  • 50. Wang C, Luan Z, Gao W. Design of pitch curve of internal-curved planet gear pump strain in type N-G-W based on three order ellipse. Advanced Material Research 2013; 787: 567-571, https://doi.org/10.4028/www.scientific.net/AMR.787.567.
  • 51. Wilson W E. Performance criteria for positive displacement pumps and fluid motors. Transition ASME 1949; 71(2).
  • 52. Wu X, Chen C, Hong C, He Y. Flow ripple analysis and structural parametric design of a piston pump. Journal of Mechanical Science and Technology 2017; 31, 4245–4254, https://doi.org/10.1007/s12206-017-0823-8.
  • 53. Zaluski P. Experimental research of an axial piston pump with displaced swash plate axis of rotation. In: Stryczek J., Warzyńska U. (eds) Advances in Hydraulic and Pneumatic Drives and Control 2020. NSHP 2020. Lecture Notes in Mechanical Engineering. Springer, Cham., https://doi.org/10.1007/978-3-030-59509-8_12.
  • 54. Zaluski P. Influence of fluid compressibility and movements of the swash plate axis of rotation on the volumetric efficiency of axial piston pumps. Energies 2022; 15(1): 298. https://doi.org/10.3390/en15010298.
  • 55. Zaluski P. Wpływ położenia osi obrotu tarczy wychylnej na sprawność objętościową pomp wielotłoczkowych osiowych (Influence of the position of the swash plate rotation axis on the volumetric efficiency of axial piston pumps). Ph.D. dissertation. Gdansk University of Technology: 2017.
  • 56. Zhang B, Song S, Jing C, Xiang D. Displacement prediction and optimization of a non-circular planetary gear hydraulic motor, Advances in Mechanical Engineering 2021; 13(11): 1–13, https://doi.org/10.1177/16878140211062690.
  • 57. Zhao H, Wang B, Chen G. Numerical study on a rotational hydraulic damper with variable damping coefficient. Scientific Reports 2021; 11: 22515, https://doi.org/10.1038/s41598-021-01859-2.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0b1d07e-52f0-4519-b462-71cf802e2380
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.