PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Fault diagnosis model of rolling bearing based on parameter adaptive VMD algorithm and Sparrow Search Algorithm-Based PNN

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fault diagnosis of rolling bearings is essential to ensure the proper functioning of the entire machinery and equipment. Variational mode decomposition (VMD) and neural networks have gained widespread attention in the field of bearing fault diagnosis due to their powerful feature extraction and feature learning capacity. However, past methods usually utilize experiential knowledge to determine the key parameters in the VMD and neural networks, such as the penalty factor, the smooth factor, and so on, so that generates a poor diagnostic result. To address this problem, an Adaptive Variational Mode Decomposition (AVMD) is proposed to obtain better features to construct the fault feature matrix and Sparrow probabilistic neural network (SPNN) is constructed for rolling bearing fault diagnosis. Firstly, the unknown parameters of VMD are estimated by using the genetic algorithm (GA), then the suitable features such as kurtosis and singular value entropy are extracted by automatically adjusting the parameters of VMD. Furthermore, a probabilistic neural network (PNN) is used for bearing fault diagnosis. Meanwhile, embedding the sparrow search algorithm (SSA) into PNN to obtain the optimal smoothing factor. Finally, the proposed method is tested and evaluated on a public bearing dataset and bearing tests. The results demonstrate that the proposed method can extract suitable features and achieve high diagnostic accuracy.
Rocznik
Strony
art. no. 163547
Opis fizyczny
Bibliogr. 30 poz., fot., tab., wykr.
Twórcy
autor
  • School of Mechatronical Engineering, Henan University of Science and Technology, Luoyang, Henan Province, China
  • Collaborative Innovation Center of Machinery Equipment Advanced Manufacturing of Henan, Luoyang, Henan Province, China
autor
  • School of Mechatronical Engineering, Henan University of Science and Technology, Luoyang, Henan Province, China
autor
  • School of Mechatronical Engineering, Henan University of Science and Technology, Luoyang, Henan Province, China
  • Collaborative Innovation Center of Machinery Equipment Advanced Manufacturing of Henan, Luoyang, Henan Province, China
autor
  • School of Mechatronical Engineering, Henan University of Science and Technology, Luoyang, Henan Province, China
Bibliografia
  • 1. Dragomiretskiy K, Zosso D. Variational Mode Decomposition. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. https://doi.org/10.1109/TSP.2013.2288675
  • 2. Frei M G, Osorio I. Intrinsic time-scale decomposition: time–frequency–energy analysis and real-time filtering of non-stationary signals [J]. Proceedings Mathematical Physical & Engineering Sciences, 2007, 463(2078): 321-442. https://doi.org/10.1098/rspa.2006.1761
  • 3. Fengtao W, Chenxi L, Tao Z, et al. A rolling bearing fault diagnosis method based on k-value optimized VMD. Journal of Vibration,Measurement and Diagnosis, 2018, 38(03):540-547. https://doi.org/10.16450/j.cnki.issn.1004-6801.2018.03.016
  • 4. Fuzheng L, Junwei G. Application of CEEMD energy moment and PSO-PNN in bearing fault diagnosis. Modern Manufacturing Engineering, 2020, (11): 120-4+98. https://doi.org/10.16731/j.cnki.1671-3133.2020.11.018
  • 5. Gx W, Miao Z, Zhihui H. Bearing fault diagnosis based on multiscale mean ranking entropy and parameter optimization support vector machine. Journal of Vibration and Shock, 2022, 41(01): 221-228, https://doi.org/10.13465/j.cnki.jvs.2022.01.028
  • 6. Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London Series A, 1998, 454, https://doi.org/10.1098/rspa.1998.0193
  • 7. Haien W, Xingxing J, Wenjun G, et al. An Enhanced VMD with the Guidance of Envelope Negentropy Spectrum for Bearing Fault Diagnosis. Complexity, 2020, 2020(1971): 1-23. https://doi.org/10.1155/2020/5162916
  • 8. Hui C, Lei Z, Guoliang X, et al. Fault Diagnosis of Rolling Bearings Using MSE and PNN. Noice and Vibration Control, 2014, 34(06): 169-173. https://doi.org/10.16450/j.cnki.issn.1004-6801.2021.01.019
  • 9. Hongzhi H, Chang Q, Fang G. Tool wear recognition based on sparrow search algorithm optimized support vector machine. Science Technology and Engineering, 2021, 21(25): 10755-10761.
  • 10. Junsheng C, Mengjun L, Longhui O, et al. FA-PMA-VMD method and its application in gear tooth root crack fault diagnosis. Journal of Vibration and Shock, 2018, 37(15): 7. https://doi.org/10.13465/j.cnki.jvs.2018.15.004
  • 11. Jian D, Yi L, Lulin T. Wind turbine gearbox fault diagnosis based on optimized VMD fusion information entropy and FA_PNN. Acta Energiae Solaris Sinica, 2021, 42(01): 198-204.https://doi.org/10.19912/j.0254-0096.tynxb.2018-0768
  • 12. Lian J, Zhuo L, WANG H, et al. Adaptive variational mode decomposition method for signal processing based on mode characteristic. Mechanical Systems & Signal Processing, 2018, 107(JUL.): 53-77. https://doi.org/10.1016/j.ymssp.2018.01.019
  • 13. Li H, Wu X, Liu T, et al. Application of variational mode decomposition and improved adaptive resonance technique in bearing fault feature extraction[J]. Journal of Vibration Engineering, 2018, 31(4): 718-726. https://doi.org/10.16385/j.cnki.issn.1004-4523.2018.04.020
  • 14. Lessmeier C, Kimotho J K, Zimmer D, et al. Condition Monitoring of Bearing Damage in Electromechanical Drive Systems by Using Motor Current Signals of Electric Motors: A Benchmark Data Set for Data-Driven Classification; proceedings of the European Conference of the Prognostics and Health Management Society, F, 2016 [C].
  • 15. Ma C, Li M, Gong L, et al. Fault Diagnosis of Rolling Bearing Based on Sparrow Search Algorithm Optimized Support Vector Machine[J]. Science Technology and Engineering. 2021,21(10):4025-4029.
  • 16. Ningnin Z, Xinkun Y, Gaofeng P, et al. Research on Bearing Fault Feature Extraction Based on ALIF and PNN. Mechanical & Electrical Engineering Technology, 2021, 50(01): 71-73.
  • 17. Peng C, Xiaoqiang Z. Early fault feature extraction of rolling bearings based on optimized VMD with improved threshold noise reduction. Journal of Vibration and Shock, 2021, 40(13): 146-153. https://doi.org/10.13465/j.cnki.jvs.2021.13.019
  • 18. Ran G, Jie C, Rongjing H. Weak fault diagnosis of rolling bearings based on improved adaptive variational modal decomposition. Journal of Vibration and Shock, 2020, 39(08):1-7+22. https://doi.org/10.13465/j.cnki.jvs.2020.08.001
  • 19. Smith W A, Randall R B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study[J]. Mechanical systems and signal processing, 2015, 64: 100-131, https://doi.org/10.1016/j.ymssp.2015.04.021
  • 20. Shuai C, Jinying H. Rolling bearing based on RCMDE and probabilistic neural network fault diagnosis. Manufacturing Automation, 2022, 44(05): 218-220.
  • 21. Smith, Jonathan S. The local mean decomposition and its application to EEG perception data. Journal of The Royal Society Interface, 2005, 2(5): 443-454. https://doi.org/10.1098/rsif.2005.0058
  • 22. Torres M E, Colominas M A, Schlotthauer G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]2011 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2011:4144-4147, https://doi.org/10.1109/ICASSP.2011.5947265
  • 23. Wenjie S, Xin H, Guangrui W. Fault diagnosis of rolling bearings based on DS-VMD and correlation cliffness. Journal of Vibration,Measurement & Diagnosis, 2021, 41(01): 133-41+204. https://doi.org/10.16450/j.cnki.issn.1004-6801.2021.01.019
  • 24. Xueping R, Pan L, Chaoge W, et al. Rolling bearing early fault diagnosis based on improved VMD and envelope derivative operator. Journal of Vibration and Shock, 2018, 37(15): 6-13. https://doi.org/10.13465/j.cnki.jvs.2018.15.002
  • 25. Xingfu Q, Renxi G. Power quality disturbances classification based on generalized S-transform and PSO-PNN. Power System Protection and Control, 2016, 44(15): 10-17.
  • 26. Yeh J R, Shieh J S, Huang N E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method[J]. Advances in adaptive data analysis, 2010, 2(02): 135-156, https://doi.org/10.1142/S1793536910000422
  • 27. Ying C, Zhengying L, Chunyan X. Analysis of overlapping peaks in X-ray fluorescence spectra of heavy soil metals based on sparrow search algorithm. Spectroscopy and Spectral Analysis, 2021, 41(07): 2175-2180.
  • 28. Yanqiang T, Chenghai L, Yafei S, et al. Adaptive Mutation Sparrow Search Optimization Algorithm. Journal of Beijing University of Aeronautics and Astronautics: 1-14.
  • 29. Zhendong D, Jianmin Z, Haiping L, et al. A fault diagnosis method of a plunger pump based on SA-EMD-PNN. Journal of Vibration and Shock, 2019, 38(08): 145-152. https://doi.org/10.13465/j.cnki.jvs.2019.08.022
  • 30. Zhang X, Liang Y, Zhou J. A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM. Measurement, 2015, 69: 164-179, https://doi.org/10.1016/j.measurement.2015.03.017
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0af7c63-2ad9-4f99-bc48-0d31c8b50fe8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.