PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluating the suitability of a new telemetric capacitance-based measurement system for real-time application in irrigation and fertilization management

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The suitability of a new wireless smart farming system for controlling irrigation and fertilization of horticultural plants was assessed in the study. The system (name: AGREUS® ) includes sensors (soil moisture, salinity, weather data), executive modules (valve modules), and an application available on the web portal (accessed through computers and mobile devices). The studies were performed under laboratory and field conditions. Laboratory tests included appraisal of the precision of soil moisture and salinity measurements carried out with the soil probe (comparison with the results obtained by laboratory methods). Operational tests were conducted in field trials. In these trials, assessment of the possibility of practical control of irrigation and monitoring soil salinity was performed in an apple orchard. The conducted analyses have shown the usefulness of the system, not only for automatic control of irrigation but also for making decisions about the necessity to fertilize plants. The system enables continuous monitoring of changes in soil moisture and salinity, including the migration of minerals across the soil profile (using a probe with several measuring elements) as a result of the applied irrigation or rainfall. The system allows for automatic application of irrigation or fertigation depending on the adopted soil moisture and salinity thresholds. However, the tests showed that a salinity index calculated by the system does not directly correspond to the salinity values determined by laboratory methods. For this reason individual interpretation and determination of optimal ranges for plants is required.
Wydawca
Rocznik
Tom
Strony
67--73
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
  • The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
  • The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
  • The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
  • The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
Bibliografia
  • ABOUKILA E., NORTON J.B. 2017. Estimation of saturated soil paste salinity from soil-water extracts. Soil Science. Vol. 182(3) p. 107–113. DOI 10.1097/SS.0000000000000197.
  • AKRAMKHANOV A., SOMMER R., MARTIUS C., HENDRICKX J.M.H., VLEK P.L.G. 2008. Comparison and sensitivity of measurement techniques for spatial distribution of soil salinity. Irrigation and Drainage Systems. Vol. 22(1) p. 115–126. DOI 10.1007/s10795-008-9043-9.
  • ALI M.H., MUBARAK S. 2017. Effective rainfall calculation methods for field crops: An overview, analysis and new formulation. Asian Research Journal of Agriculture. Vol. 7(1) p. 1–12. DOI 10.9734/ARJA/2017/36812.
  • BIANCHI A., MASSERONI D., THALHEIMER M., MEDICI L., FACCHI A. 2017. Field irrigation management through soil water potential measurements: A review. Italian Journal of Agrometeorology. Vol. 22(2) p. 25–38. DOI 10.19199/2017.2.2038-5625.025.
  • BITTELLI M. 2010. Measuring soil water potential for water management in agriculture: A review sustainability. Sustainability. Vol. 2(5) p. 1226–1251. DOI 10.3390/su2051226.
  • BURNETT E., VAN IERSEL M.W. 2008. Morphology and irrigation efficiency of Gaura lindheimeri grown with capacitance sensor-controlled irrigation. HortScience. No. 43(5) p. 1555–1560. DOI 10.21273/HORTSCI.43.5.1555.
  • CAETANO F., PITARMA R., REIS P. 2015. Advanced system for garden irrigation management. In: New contributions in information systems and technologies. T. 1. Eds. A. Rocha, A.M. Correia, S. Costanzo, L.P. Reis. Ser. Advances in Intelligent Systems and Computing. Vol. 353 p. 565–574. DOI 10.1007/978-3-319-16486-1_55.
  • CAMPBELL C.S., CAMPBELL G.S., COBOS D.R., BISSEY L.L. 2009. Calibration and evaluation of an improved low-cost soil moisture sensor [online]. Application Note. Pullman, WA, USA. Decagon Devices p. 256–267. [Access 1.03.2022]. Available at: https://www.irrigation.org/IA/FileUploads/IA/Resources/TechnicalPapers/2007/CalibrationAndEvaluationOfAnImprovedLow-CostSoil-MoistureSensor.pdf
  • DALTON M., BUSS P., MARKS D. 2018. Real-time 2D visualization of soil fertilizer dynamics in potatoes using a multi-sensor capacitance probe array. Acta Horticulturae. Vol. 1192 p. 97–104. DOI 10.17660/ActaHortic.2018.1192.11.
  • EKWUE E.I., BARTHOLOMEW J. 2011. Electrical conductivity of some soils in Trinidad as affected by density, water and peat content. Biosystems Engineering. Vol. 108(2) p. 95–103. DOI 10.1016/j.biosystemseng.2010.11.002.
  • HILHORST M.A. 2000. A pore water conductivity sensor. Soil Science Society of America Journal. Vol. 64(6) p. 1922–1925. DOI 10.2136/sssaj2000.6461922x.
  • HUAN Z., WANG H., LI C., WAN C. 2017. The soil moisture sensor based on soil dielectric property. Personal and Ubiquitous Computing. Vol. 21 p. 67–74. DOI 10.1007/s00779-016-0975-z.
  • INCROCCI L., INCROCCI G., PARDOSSI A., LOCK G., NICHOLL C., BALENDONCK J. 2009. The calibration of WET-sensor for volumetric water content and pore water electrical conductivity in different horticultural substrates. Acta Horticulturae. Vol. 807 p. 289–294. DOI 10.17660/ActaHortic.2009.807.39.
  • JAYARAMAN P.P., YAVARI A., GEORGAKOPOULOS D., MORSHED A., ZASLAVSKY A. 2016. Internet of Things platform for smart farming: experiences and lessons learnt. Sensors. Vol. 16(11), 1884. DOI 10.3390/s16111884.
  • KARGAS G., KERKIDES P., SEYFRIED M., SGOUMBOPOULOU A. 2011. WET sensor performance in organic and inorganic media with heterogeneous moisture distribution. Soil Science Society of America Journal. Vol. 75(4) p. 1244–1252. DOI 10.2136/sssaj2010.0238.
  • KENNEDY J.R., KEEFER T.O., PAIGE G.B., BARNES E. 2003. Evaluation of dielectric constant-based soil moisture sensors in a semiarid rangeland [online]. In: Proceedings First Interagency Conference on Research in the Watersheds. 27–30.10.2003, Benson, AZ. USGS p. 503–508. [Access 1.03.2022]. Available at: http://www.tucson.ars.ag.gov/icrw/Proceedings/Kennedy.pdf
  • KLAMKOWSKI K., TREDER W. 2017. Estimating the substrate water status using capacitance measurements. Infrastruktura i Ekologia Terenów Wiejskich. No. 2 p. 521–533. DOI 10.14597/infraeco.2017.2.1.039.
  • MULLA D.J., YUXIN M. 2015. Precision farming. In: Land resources monitoring, modeling, and mapping with remote sensing. Ed. P.S. Thenkabail. Boca Raton, USA. CRC Press p. 161–178.
  • ROGERS G., SHUTTLEWORTH L., FOX M., FUENTES S., DALTON M., CONROY J. 2008. Evaluation of a combined soil EC and moisture sensor and its use to co-manage soil moisture and vine nitrogen in grapevines (cv. Shiraz) under deficit irrigation. Acta Horticulturae. Vol. 792 p. 543–549. DOI 10.17660/ActaHortic.2008.792.63.
  • ROGOVSKA N., LAIRD D.A., CHIOU C.P., BOND L.J. 2019. Development of field mobile soil nitrate sensor technology to facilitate precision fertilizer management. Precision Agriculture. Vol. 20 p. 40–55. DOI 10.1007/s11119-018-9579-0.
  • ROLBIECKI S., CHMURA K. 2015. Comparison of water needs of true millet in the region of Bydgoszcz and Wrocław. Infrastruktura i Ekologia Terenów Wiejskich. No. 2 p. 787–795.
  • ROMERO P., FERNÁNDEZ-FERNÁNDEZ J.I., MARTINEZ-CUTILLAS A. 2010. Physiological thresholds for efficient regulated deficit-irrigation management in winegrapes grown under semiarid conditions. American Journal of Enology and Viticulture. Vol. 61 p. 300–312.
  • SHAHID S.A., ABDELFATTAH M.A., MAHMOUDI H. 2013. Innovations in soil chemical analyses: New ECs and total salts relationship for Abu Dhabi emirate soils. In: Developments in soil classification, land use planning and policy implications – innovative thinking of soil inventory for land use planning and management of land resources. Eds. S.A. Shahid, F.K. Taha, M.A. Abdelfattah. Dordrecht, The Netherlands. Springer p. 799–812.
  • SHUFIAN A., HAIDER M.R., HASIBUZZAMAN M. 2021. Results of a simulation to propose an automated irrigation & monitoring system in crop production using fast charging & solar charge controller. Cleaner Engineering and Technology. Vol. 4, 100165. DOI 10.1016/j.clet.2021.100165.
  • SONMEZ S., BUKUKTAS D., OKTUREN F., CITAK S. 2008 Assessment of different soil water ratios (1:1, 1:2.5, 1:5) in soil salinity studies. Geoderma. Vol. 144 p. 361–369. DOI 10.1016/j.geoderma.2007.12.005.
  • STARR J.L., TIMLIN D.J., DOWNEY P.M., MC CANN I.R. 2009. Laboratory evaluation of dual-frequency multisensor capacitance probes to monitor soil water and salinity. Irrigation Science. Vol. 27(5) p. 393–400.
  • TREDER J., TREDER W., BORKOWSKA A., KLAMKOWSKI K. 2015a. Wpływ metod sterowania nawadnianiem poinsecji na wzrost i pokrój roślin [Controlled irrigation of poinsettia – a tool to plant shape regulation]. Infrastruktura i Ekologia Terenów Wiejskich. No. 2 p. 269–278.
  • TREDER W., KLAMKOWSKI K. 2008. Ocena przydatności sond drenażu glebowego do prowadzenia diagnostyki nawadniania i fertygacji roślin sadowniczych [Evaluation of wetting front detector for use with irrigated and fertigated fruit crops]. Zeszyty Naukowe ISK. No. 16 p. 191–203.
  • TREDER W., TRYNGIEL-GAĆ A., KLAMKOWSKI K. 2015b. Potrzeby wodne matecznika truskawki prowadzonego pod osłonami [Water requirements of strawberry nursery grown under greenhouse conditions]. Infrastruktura i Ekologia Terenów Wiejskich. No. 2 p. 221–232.
  • RICHARDS L.A. 1954. Diagnosis and improvement of saline and alkali soils. Agriculture Handbook. No. 60. Washington, DC, USA. USDA pp. 159.
  • VEREECKEN H., HUISMAN J.A., PACHEPSKY Y., MONTZKA C., VAN DER KRUK J., BOGENA H., WEIHERMÜLLER L., HERBST M., MARTINEZ G., VANDERBORGHT J. 2014. On the spatio-temporal dynamics of soil moisture at the field scale. Journal of Hydrology. Vol. 516 p. 76–96. DOI 10.1016/j.jhydrol.2013.11.061.
  • ZAMAN M., SHAHID S.A., HENG L. 2018. Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Cham. Springer. ISBN 978-3-319-96190-3 pp. 164. DOI 10.1007/978-3-319-96190-3.
  • ZHANG H., SCHRODER J.L., PITTMAN J.J., WANG J.J., PAYTON M.E. 2005. Soil salinity using saturated paste and 1:1 soil to water extracts. Soil Science Society of America Journal. Vol. 69 p. 1146–1151. DOI 10.2136/sssaj2004.0267.
  • ŻARSKI J., DUDEK S., KUŚMIEREK-TOMASZEWSKA R. 2011. Potrzeby i efekty nawadniania ziemniaka na obszarach szczególnie deficytowych w wodę [Needs and irrigation effects on potato in areas of particular deficits in the water]. Infrastruktura i Ekologia Terenów Wiejskich. No. 5 p. 175–182.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0ac0206-df02-45a2-9aec-8f02d23e62df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.