PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cultivation of Chlorella sp. for biodiesel production using two farming wastewaters in eastern Colombia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The production of biofuels using wastewater as a microalgae culture medium is a little explored technology, but with potential for success. In order to contribute to the knowledge of these technologies and their technical feasibility for microalgae growth, in this work the Chlorella sp. strain was cultivated in two types of effluents generated in an experimental farm located in eastern Colombia, before and after a biological treatment process. The consumption of the main nutrients that regulate growth and lipid production was evaluated, in order to extract, quantify, characterize and convert them into biodiesel. The results showed that Chlorella sp. growth and lipid production is more favourable in R2 medium of treated water than in R1 medium of raw water, mainly due to phosphorus limitation and higher N-NO3 concentration in R2 compared to R1. In the R2 medium culture, a percentage of 42.54% of long-chain fatty acids was found, which is necessary to obtain a high quality biodiesel. Finally, the best transesterification experiment allowed reaching a fatty acid methyl esters (FAME) percentage of 90.1 ± 2.7%. In general, the results demonstrated the potential viability of using the wastewater generated in the San Pablo farm to produce biomass with lipid content to obtain biodiesel, finding that where the concentration of nutrients, mainly nitrogen, has a great influence on the microalgal metabolism for lipid accumulation.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
141--149
Opis fizyczny
Bibliogr. 53 poz., fot., rys., tab.
Twórcy
  • Francisco de Paula Santander University, Cúcuta, Colombia
  • Francisco de Paula Santander University, Cúcuta, Colombia
  • Francisco de Paula Santander University, Cúcuta, Colombia
  • Francisco de Paula Santander University, Cúcuta, Colombia
  • University of Cartagena, Avenida del Consulado Calle 30 No. 48-152, Cartagena, Bolívar, Colombia
Bibliografia
  • ALADE O.S., AMJED H., MOHAMED M., DHAFER A., ABDULAZIZ A. 2020. Novel approach for improving the flow of waxy crude oil using thermochemical fluids: Experimental and simulation study. ACS Omega. No. 5 p. 4313–4321. DOI 10.1021/acsomega .9b04268.
  • ANDREOTTI V., SOLIMENO A., CHINDRIS A., MARAZZI F., GARCÍA G. 2019. Growth of Tetraselmis suecica and Dunaliella tertiolecta in aquaculture wastewater: Numerical simulation with the BIO_ALGAE Model. Water, Air & Soil Pollution. No. 230 p. 1–14. DOI 10.1007/s11270-019-4122-0.
  • AZIZ M.M.A., KASSIM K.A., SHOKRAVI Z., JAKARNI F.M., LIU H.Y., ZAINI N., TAN L.S., ISLAM A.B.M.S., SHOKRAVI H. 2020. Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review. Renewable and Sustainable Energy Reviews. No. 119 p. 109621. DOI 10.1016/j.rser.2019 .109621.
  • BATTACHARYA R., MAZUMDER D. 2021. Evaluation of nitrification kinetics for treating ammonium nitrogen enriched wastewater in moving bed hybrid bioreactor. Journal of Environmental Chemical Engineering. No. 9, 104589. DOI 10.1016/j.jece.2020 .104589.
  • CAPORGNO M.P., TALEB A., OLKIEWICZ M., FONT J., PRUVOST J., LEGRAND J., BENGOA C. 2015. Microalgae cultivation in urban wastewater: Nutrient removal and biomass production for biodiesel and methane. Algal Research. No. 10 p. 232–239. DOI 10.1016/j. algal.2015.05.011.
  • CHEN W., LIU Y., SONG L., SOMMERFELD M., HU Q. 2020. Automated accelerated solvent extraction method for total lipid analysis of microalgae. Algal Research. No 51, 102080. DOI 10.1016/j. algal.2020.102080.
  • CHISTI Y. 2007. Biodiesel from microalgae. Biotechnology Advances. No. 25 p. 294–306. DOI 10.1016/j.biotechadv .2007.02.001.
  • CHU F., CHENG J., ZHANG Z., YE Q., ZHOU J. 2019. Enhancing lipid production in microalgae Chlorella PY-ZU1 with phosphorus excess and nitrogen starvation under 15% CO2 in a continuous two-step cultivation process. Chemical Engineering Journal. No 375 p.121912. DOI 10.1016/j.cej.2019.121912.
  • COSTA M., LERCHUNDI G., VILLARROEL F., TORRES M., SCHÖBITZ R. 2009. Producción de enzima fitasade Aspergillus ficuumcon residuos agroindustriales en fermentación sumergida y sobre sustrato sólido [Phytase production by Aspergillus ficuum in submerged and solid state fermentation using agroindustrial waste as support]. Revista Colombiana de Biotecnologia. No. 9 p. 73–83.
  • CUÉLLAR-GARCÍA D.J., RANGEL-BASTO Y.A., URBINA-SUAREZ N.A., BARAJAS- SOLANO A. F., MUÑOZ-PEÑALOZA Y.A. 2019. Lipids production from Scenedesmus obliquus through carbon/nitrogen ratio optimization. Journal of Physics: Conference Series. Vol. 1388, 012043. DOI 10.1088/1742-6596/1388/1/012043.
  • DAOCHALERMWONG A., CHANKA N., SONGSRIROTE K., DITTANET P., NIAMNUY C., SEUBSAI A. 2020. Removal of heavy metal ions using modified celluloses prepared from pineapple leaf fiber. ACS Omega. No. 5 p. 5285–5296. DOI 10.1021/acsomega.9b04326.
  • DOMAŃSKA M., BORAL A., HAMAL K., KUŚNIERZ M., ŁOMOTOWSKI J., PŁAZA- OŻÓG P. 2019. Efficiency of municipal wastewater treatment with membrane bioreactor. Journal of Water and Land Development. No. 41 p. 47–54. DOI 10.2478/jwld-2019-0026.
  • EHIMEN E.A., SUN Z.F., CARRINGTON C.G. 2010. Variables affecting the in situ transesterification of microalgae lipids. Fuel. No. 89 p. 677– 684. DOI 10.1016/j.fuel.2009.10.011.
  • FERREIRA VELA M.A., ACEVEDO-PÁEZ J.C., URBINA-SUÁREZ N., RANGEL BASTO Y.A., GONZÁLEZ-DELGADO Á.D. 2020. Enzymatic transesterification ofwaste frying oil from local restaurants in east Colombia using a combined lipase system. Applied Sciences (Switzerland). No. 10 p. 1–16. DOI 10.3390/app10103566.
  • FLÓREZ-MIRANDA L., CAÑIZARES-VILLANUEVA R.O., MELCHY-ANTONIO O., MARTÍNEZ-JERÓNIMO F., FLORES-ORTÍZ C.M. 2017. Two stage heterotrophy/photoinduction culture of Scenedesmus incrassatulus: potential for lutein production. Journal of Biotechnology. No. 262 p. 67–74. DOI 10.1016/j.jbiotec.2017.09.002.
  • GAO F., YANG H.-L., LI C., PENG Y.-Y., LU, M.-M., JIN W.-H., BAO J.-J., GUO Y.-M. 2019. Effect of organic carbon to nitrogen ratio in wastewater on growth, nutrient uptake and lipid accumulation of a mixotrophic microalgae Chlorella sp. Bioresource Technology. No. 282 p. 118–124. DOI 10.1016/j.biortech.2019.03.011.
  • GONZALEZ E.G., DE CARVALHO J.C., AULESTIA D.T.M., GONZALEZ O.I.M., SOCCOL C.R. 2020. Bioprospection of green microalgae native to Paraná, Brazil using a multi-criteria analysis: Potential for the production of lipids, proteins, and carotenoids. Bioresource Technology Reports. No. 10 p. 100398. DOI 10.1016/j.biteb .2020.100398.
  • GARCIA-MARTINEZ J.B., URBINA-SUAREZ N.A., ZUORRO A., BARAJAS-SOLANO A.F., KAFAROV V. 2019. Fisheries wastewater as a sustainable media for the production of algae-based products. Chemical Engineering Transactions. No. 76 p.1339–1344. DOI 10.3303/ CET1976224.
  • GARZON-SANABRIA A.J., DAVIS R.T., NIKOLOV Z.L. 2012. Harvesting Nannochloris oculata by inorganic electrolyte flocculation: Effect of initial cell density, ionic strength, coagulant dosage, and media PH. Bioresource Technology. No. 118 p. 418–424. DOI 10.1016/j. biortech.2012.04.057.
  • GIL-IZQUIERDO A., PEDREÑO M.A., MONTORO-GARCÍA S., TÁRRAGA- MARTÍNEZ M., IGLESIAS P., FERRERES F., BARCELÓ D., NÚÑEZ- DELICADO E., GABALDÓN J.A. 2021. A sustainable approach by using microalgae to minimize the eutrophication process of Mar Menor lagoon. Science of the Total Environment. No. 758, 143613. DOI 10.1016/j.scitotenv.2020.143613.
  • GOUVEIA L., OLIVEIRA A. 2009. Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology & Biotecnology. No. 36 p. 269–274. DOI 10.1007/s10295-008-0495-6.
  • GROBBELAAR J. 2013. Inorganic algal nutrition. Chapt. 8. In: Handbook of microalgal culture: Applied phycology and biotechnology. Ed. 2nd. Eds. A. Richmond, Q. Hu. Hoboken. Wiley-Blackwell p. 123–133.
  • HAN J., CHOI Y., JUNGHWAN K. 2020. Development of the process model and optimal drying conditions of biomass power plants. ACS Omega. No. 5 p. 2811–218. DOI 10.1021/acsomega.9b03557.
  • HASSAN R.M., IBRAHIM S.M., SAYED S.A., ZAAFARANY I.A. 2020. Promising biocompatible, biodegradable, and inert polymers for purification of wastewater by simultaneous removal of carcinogenic Cr(VI) and present toxic heavy metal cations: Reduction of chromium (VI) by poly(ethylene glycol) in aqueous perchlorate solut. ACS Omega. No. 5 p. 4424–4432. DOI 10.1021/acsomega.9b03485.
  • HE Y., ZHANG B., GUO S., GUO Z., CHEN B., WANG M. 2020. Sustainable biodiesel production from the green microalgae Nannochloropsis: Novel integrated processes from cultivation to enzyme-assisted extraction and ethanolysis of lipids. Energy Conversion and Management. No. 209 p. 112618. DOI 10.1016/j.encon-man.2020.112618.
  • HERNANDEZ-MARTINEZ G.R., ORTIZ-ALVAREZ D., PEREZ-ROA M., URBINA- SUAREZ N.A., THALASSO F. 2018. Multiparameter analysis of activated sludge inhibition by nickel, cadmium, and cobalt. Journal of Hazardous Materials. No. 351 p. 63–70. DOI 10.1016/j. jhazmat.2018.02.032.
  • HU J., LIU H., SHUKLA P., LIN W., LUO J. 2020. Nitrogen and phosphorus removals by the agar-immobilized Chlorella sacchrarophila with long-term preservation at room temperature. Chemosphere. No. 251, p. 126406. DOI 10.1016/j.chemosphere.2020.126406.
  • JAIMES-DUARTE D.-L., SOLER-MENDOZA W., VELASCO-MENDOZA J., MUÑOZ- PEÑALOZA Y., URBINA-Suárez N.-A. 2012. Characterization Chlorophytas microalgae with potential in the production of lipids for biofuels. CT&F - Ciencia, Tecnología y Futuro. No. 5 p. 93–102. DOI 10.29047/01225383.210
  • JI M.-K., YUN H.-S., HWANG B.S., KABRA A.N., JEON B.-H., CHOI J. 2016. Mixotrophic cultivation of Nephroselmis sp. using industrial wastewater for enhanced microalgal biomass production. Ecological Engineering. No. 95 p. 527–533. DOI 10.1016/j.eco-leng.2016.06.017.
  • LEAL MEDINA G.I., ABRIL BONETT J.E., MARTÍNEZ GÉLVEZ S.J., MUÑOZ PEÑALOZA Y.A., PEÑARANDA LIZARAZO E.M., URBINA SUÁREZ N.A. 2017. Producción de ácidos grasos poliinsaturados a partir de biomasa microalgal en un cultivo heterotrófico [Production of polyunsaturated fatty acids from microalgal biomass in a hetero-trophic culture]. Revista Ion. No. 30 p. 91–103. DOI 10.18273/ revion.v30n1-2017007.
  • LI Y., HORSMAN M., WANG B., WU N., LAN C.Q. 2008. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology. No. 81 p. 629–636. DOI 10.1007/s00253-008-1681-1.
  • LUANGPIPAT T., CHISTI Y. 2016. Biomass and oil production by Chlorella vulgaris and four other microalgae – Effects of salinity and other factors. Journal of Biotechnology. No. 257 p. 47–57. DOI 10.1016/j.jbiotec.2016.11.029.
  • MOHAZZAB B.F., BABAK J., NASROLLAHZADEH M., MOHADDESEH S., VARMA R. 2020. Upgraded valorization of biowaste: Laser-assisted synthesis of Pd/ calcium lignosulfonate nanocomposite for hydrogen storage and environmental remediation. ACS Omega. No. 5 p. 5888–5599. DOI 10.1021/acsomega.9b04149.
  • NGUYEN T.T., UEMURA Y., LAM M.K., MANSOR N., LIM J.W. 2019. Revealing the effect of reaction parameters towards alkyl group distribution in in-situ transesterification of Chlorella vulgaris. Energy Conversion and Management. No. 185 p. 223–231. DOI 10.1016/j.enconman.2019.01.113.
  • ÖRDÖG V., STIRK W.A., BALINT P., VAN STADEN J., LOVASZ C. 2012. Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. Journal of Applied Phycology. No. 24 p. 907–914. DOI 10.1007/s10811- 011-9711-2.
  • PEŁECHATA A., PELECHATY M., PUKACZ A. 2016. Factors influencing cyanobacteria community structure in Charalakes. Ecological Indicators. No. 71 p. 477–490. DOI 10.1016/j.ecolind.2016 .07.022.
  • PERALES-VELA H.V, GONZÁLEZ-MORENO S., MONTES-HORCASITAS C., CAÑIZARES-VILLANUEVA R.O. 2007. Growth, photosynthetic and respiratory responses to sub-lethal copper concentrations in Scenedesmus incrassatulus (Chlorophyceae). Chemosphere. No. 67 p. 2274–2281. DOI 10.1016/j.chemosphere.2006.11.036.
  • PICOS-CORRALES L.A., SARMIENTO-SÁNCHEZ J.., RUELAS-LEYVA J.P., CRINI G., HERMOSILLO-OCHOA E., GUTIERREZ-MONTES J.A. 2020. Environment-friendly approach toward the treatment of raw agricultural wastewater and river water via flocculation using chitosan and bean straw flour as bioflocculants. ACS Omega. No. 5 p. 3943– 3951. DOI 10.1021/acsomega.9b03419.
  • PLATA V., KAFAROV V., MORENO N. 2010. Optimization of third generation biofuels production: biodiesel from microalgae oil by homogeneous transesterification. Chemical Engineering Transactions. No. 21 p. 1201–1206. DOI 10.3303/CET1021201.
  • RAMÍREZ-FAJARDO A., CERDÁN L., ROBLES-MEDINA A., ACIÉN-FERNÁNDEZ F., GONZÁLEZ-MORENO P., MOLINA-GRIMA E. 2007. Lipid extraction from the microalga Phaeodactylum tricornutum. European Journal of Lipid Science and Technology. No. 109 p. 120–127. DOI 10.1002/ejlt.200600216.
  • RAMÍREZ-LÓPEZ C., CHAIREZ I., FERNÁNDEZ-LINARES L. 2016. A novel culture medium designed for the simultaneous enhancement of biomass and lipid production by Chlorella vulgaris UTEX 26. Bioresource Technology. No. 212 p. 207–216. DOI 10.1016/j. biortech.2016.04.051.
  • RAMOS M., FERNÁNDEZ C., CASAS A., RODRÍGUEZ L., PÉREZ A. 2009. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology. No. 100 p. 261–68. DOI 10.1016/j.biortech.2008.06.039.
  • RAWAT I., KUMAR R., MUTANDA T., BUX F. 2013. Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Applied Energy. No. 103 p. 444–467. DOI 10.1016/j. apenergy.2012.10.004.
  • RICE E., BAIRD R., EATON A. 2017. Standard methods for the examination of water and wastewater. 23rd ed. Washington, D.C. American Public Health Association. ISBN 9780875532875 pp. 1796.
  • RICHMOND A. 2004. Principles for attaining maximal microalgal productivity in photobioreactors: An overview. Asian Pacific Phycology in the 21st Century: Prospects and Challenges Developments in Hydrobiology. No. 173 p. 33–37.
  • SANGHAMITRA S., DESHMUKH S., NARAYAN K.P. 2020. Effects of alternate nutrient medium on microalgae biomass and lipid production as a bioenergy source for fuel production. Materials Today: Proceedings. Vol. 28. Iss. P2 p. 659–664. 10.1016/j.matpr.2019 .12.238.
  • SARANYA D., SHANTHAKUMAR S. 2019. Green microalgae for combined sewage and tannery effluent treatment: Performance and lipid accumulation potential. Journal of Environmental Management. Journal of Environmental Management. No. 241 p. 167–178. DOI 10.1016/j.jenvman.2019.04.031.
  • SPOLAORE P., JOANNIS-CASSAN C., DURAN E., ISAMBERT A. 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering. No. 101 p. 87–96. DOI 10.1263/jbb.101.87.
  • SU Y. 2021. Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Science of The Total Environment. No. 762, 144590. DOI 10.1016/j.scitotenv.2020 .144590.
  • TORRES D., SEPÚLVEDA S., ROA A., GELVEZ J., SUÁREZ N. 2017. Utilización de microalgas de la división Chlorophyta en el tratamiento biológico de drenajes ácidos de minas de carbón [Use of microalgae from the Chlorophyta division in the biological treatment of acidic coal mine drains]. Revista Colombiana de Biotecnologia. No. 19 p. 95–104. DOI 10.15446/rev.colomb.biote. v19n2.70429.
  • VAN DO T., NGUYEN T., TRAN D., LE T., NGUYEN V. 2020. Semi-continuous removal of nutrients and biomass production from domestic wastewater in raceway reactors using Chlorella variabilis TH03-bacteria consortia. Environmental Technology and Innovation. No. 20, 101172. DOI 10.1016/j.eti.2020.101172.
  • VERONESI D., IDA A., D’IMPORZANO G., ADANI F.. 2015. Microalgae cultivation: Nutrient recovery from digestate for producing algae biomass. Chemical Engineering Transactions. No. 43 p. 1201– 1206. DOI 10.3303/CET1543201.
  • ZIKELI F., VINCIGUERRA V., SENNATO S., SCARASCIA MUGNOZZA G., ROMAGNOLI M. 2020. Preparation of lignin nanoparticles with entrapped essential oil as a bio-based biocide delivery system. ACS Omega. No. 5 p. 358–368. DOI 10.1021/acsomega .9b02793.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0a8cadc-17bb-4764-9b64-a7fec2f73b27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.